Appendicular Health Dictionary

Appendicular: From 1 Different Sources


adj. 1. relating to or affecting the vermiform appendix. 2. relating to the limbs: the appendicular skeleton comprises the bones of the limbs.
Health Source: Oxford | Concise Colour Medical Dictionary
Author: Jonathan Law, Elizabeth Martin

Bone

The framework upon which the rest of the body is built up. The bones are generally called the skeleton, though this term also includes the cartilages which join the ribs to the breastbone, protect the larynx, etc.

Structure of bone Bone is composed partly of ?brous tissue, partly of bone matrix comprising phosphate and carbonate of lime, intimately mixed together. The bones of a child are about two-thirds ?brous tissue, whilst those of the aged contain one-third; the toughness of the former and the brittleness of the latter are therefore evident.

The shafts of the limb bones are composed of dense bone, the bone being a hard tube surrounded by a membrane (the periosteum) and enclosing a fatty substance (the BONE MARROW); and of cancellous bone, which forms the short bones and the ends of long bones, in which a ?ne lace-work of bone ?lls up the whole interior, enclosing marrow in its meshes. The marrow of the smaller bones is of great importance. It is red in colour, and in it red blood corpuscles are formed. Even the densest bone is tunnelled by ?ne canals (Haversian canals) in which run small blood vessels, nerves and lymphatics, for the maintenance and repair of the bone. Around these Haversian canals the bone is arranged in circular plates called lamellae, the lamellae being separated from one another by clefts, known as lacunae, in which single bone-cells are contained. Even the lamellae are pierced by ?ne tubes known as canaliculi lodging processes of these cells. Each lamella is composed of very ?ne interlacing ?bres.

GROWTH OF BONES Bones grow in thickness from the ?brous tissue and lime salts laid down by cells in their substance. The long bones grow in length from a plate of cartilage (epiphyseal cartilage) which runs across the bone about 1·5 cm or more from its ends, and which on one surface is also constantly forming bone until the bone ceases to lengthen at about the age of 16 or 18. Epiphyseal injury in children may lead to diminished growth of the limb.

REPAIR OF BONE is e?ected by cells of microscopic size, some called osteoblasts, elaborating the materials brought by the blood and laying down strands of ?brous tissue, between which bone earth is later deposited; while other cells, known as osteoclasts, dissolve and break up dead or damaged bone. When a fracture has occurred, and the broken ends have been brought into contact, these are surrounded by a mass of blood at ?rst; this is partly absorbed and partly organised by these cells, ?rst into ?brous tissue and later into bone. The mass surrounding the fractured ends is called the callus, and for some months it forms a distinct thickening which is gradually smoothed away, leaving the bone as before the fracture. If the ends have not been brought accurately into contact, a permanent thickening results.

VARIETIES OF BONES Apart from the structural varieties, bones fall into four classes: (a) long bones like those of the limbs; (b) short bones composed of cancellous tissue, like those of the wrist and the ankle; (c) ?at bones like those of the skull; (d) irregular bones like those of the face or the vertebrae of the spinal column (backbone).

The skeleton consists of more than 200 bones. It is divided into an axial part, comprising the skull, the vertebral column, the ribs with their cartilages, and the breastbone; and an appendicular portion comprising the four limbs. The hyoid bone in the neck, together with the cartilages protecting the larynx and windpipe, may be described as the visceral skeleton.

AXIAL SKELETON The skull consists of the cranium, which has eight bones, viz. occipital, two parietal, two temporal, one frontal, ethmoid, and sphenoid; and of the face, which has 14 bones, viz. two maxillae or upper jaw-bones, one mandible or lower jaw-bone, two malar or cheek bones, two nasal, two lacrimal, two turbinal, two palate bones, and one vomer bone. (For further details, see SKULL.) The vertebral column consists of seven vertebrae in the cervical or neck region, 12 dorsal vertebrae, ?ve vertebrae in the lumbar or loin region, the sacrum or sacral bone (a mass formed of ?ve vertebrae fused together and forming the back part of the pelvis, which is closed at the sides by the haunch-bones), and ?nally the coccyx (four small vertebrae representing the tail of lower animals). The vertebral column has four curves: the ?rst forwards in the neck, the second backwards in the dorsal region, the third forwards in the loins, and the lowest, involving the sacrum and coccyx, backwards. These are associated with the erect attitude, develop after a child learns to walk, and have the e?ect of diminishing jars and shocks before these reach internal organs. This is aided still further by discs of cartilage placed between each pair of vertebrae. Each vertebra has a solid part, the body in front, and behind this a ring of bone, the series of rings one above another forming a bony canal up which runs the spinal cord to pass through an opening in the skull at the upper end of the canal and there join the brain. (For further details, see SPINAL COLUMN.) The ribs – 12 in number, on each side – are attached behind to the 12 dorsal vertebrae, while in front they end a few inches away from the breastbone, but are continued forwards by cartilages. Of these the upper seven reach the breastbone, these ribs being called true ribs; the next three are joined each to the cartilage above it, while the last two have their ends free and are called ?oating ribs. The breastbone, or sternum, is shaped something like a short sword, about 15 cm (6 inches) long, and rather over 2·5 cm (1 inch) wide.

APPENDICULAR SKELETON The upper limb consists of the shoulder region and three segments – the upper arm, the forearm, and the wrist with the hand, separated from each other by joints. In the shoulder lie the clavicle or collar-bone (which is immediately beneath the skin, and forms a prominent object on the front of the neck), and the scapula or shoulder-blade behind the chest. In the upper arm is a single bone, the humerus. In the forearm are two bones, the radius and ulna; the radius, in the movements of alternately turning the hand palm up and back up (called supination and pronation respectively), rotating around the ulna, which remains ?xed. In the carpus or wrist are eight small bones: the scaphoid, lunate, triquetral, pisiform, trapezium, trapezoid, capitate and hamate. In the hand proper are ?ve bones called metacarpals, upon which are set the four ?ngers, each containing the three bones known as phalanges, and the thumb with two phalanges.

The lower limb consists similarly of the region of the hip-bone and three segments – the thigh, the leg and the foot. The hip-bone is a large ?at bone made up of three – the ilium, the ischium and the pubis – fused together, and forms the side of the pelvis or basin which encloses some of the abdominal organs. The thigh contains the femur, and the leg contains two bones – the tibia and ?bula. In the tarsus are seven bones: the talus (which forms part of the ankle joint); the calcaneus or heel-bone; the navicular; the lateral, intermediate and medial cuneiforms; and the cuboid. These bones are so shaped as to form a distinct arch in the foot both from before back and from side to side. Finally, as in the hand, there are ?ve metatarsals and 14 phalanges, of which the great toe has two, the other toes three each.

Besides these named bones there are others sometimes found in sinews, called sesamoid bones, while the numbers of the regular bones may be increased by extra ribs or diminished by the fusion together of two or more bones.... bone

Ultrasound

Ultrasound, or ultrasonic, waves comprise very-high-frequency sound waves above 20,000 Hz that the human ear cannot hear. Ultrasound is widely used for diagnosis and also for some treatments. In OBSTETRICS, ultrasound can assess the stage of pregnancy and detect abnormalities in the FETUS (see below). It is a valuable adjunct in the investigation of diseases in the bladder, kidneys, liver, ovaries, pancreas and brain (for more information on these organs and their diseases, see under separate entries); it also detects thromboses (clots) in blood vessels and enables their extent to be assessed. A non-invasive technique that does not need ionising radiation, ultrasound is quick, versatile and relatively inexpensive, with scans being done in any plane of the body. There is little danger to the patient or operator: unlike, for example, XRAYS, ultrasound investigations can be repeated as needed. A contrast medium is not required. Its reliability is dependent upon the skill of the operator.

Ultrasound is replacing ISOTOPE scanning in many situations, and also RADIOGRAPHY. Ultrasound of the liver can separate medical from surgical JAUNDICE in approximately 97 per cent of patients; it is very accurate in detecting and de?ning cystic lesions of the liver, but is less accurate with solid lesions – and yet will detect 85 per cent of secondary deposits (this is less than COMPUTED TOMOGRAPHY [CT] scanning). It is very accurate in detecting gall-stones (see GALL-BLADDER, DISEASES OF) and more accurate than the oral cholecystogram. It is useful as a screening test for pancreatic disease and can di?erentiate carcinoma of the pancreas from chronic pancreatitis with 85 per cent accuracy.

Ultrasound is the ?rst investigation indicated in patients presenting with renal failure, as it can quickly determine the size and shape of the kidney and whether there is any obstruction to the URETER. It is very sensitive to the presence of dilatation of the renal tract and will detect space-occupying lesions, di?erentiating cysts and tumours. It can detect also obstruction of the ureter due to renal stones by showing dilatations of the collecting system and the presence of the calculus. Adrenal (see ADRENAL GLANDS) tumours can be demonstrated by ultrasound, although it is less accurate than CT scanning.

The procedure is now the ?rst test for suspected aortic ANEURYSM and it can also show the presence of clot and delineate the true and false lumen. It is good at demonstrating subphrenic and subhepatic abscesses (see ABSCESS) and will show most intra-abdominal abscesses; CT scanning is however better for the retroperitoneal region. It has a major application in thyroid nodules as it can di?erentiate cystic from solid lesions and show the multiple lesions characteristic of the nodular GOITRE (see also THYROID GLAND, DISEASES OF). It cannot differentiate between a follicular adenoma and a carcinoma, as both these tumours are solid; nor can it demonstrate normal parathyroid glands. However, it can identify adenomas provided that they are more than 6 mm in diameter. Finally, ultrasound can di?erentiate masses in the SCROTUM into testicular and appendicular, and it can demonstrate impalpable testicular tumours. This is important as 15 per cent of testicular tumours metastasise whilst they are still impalpable.

Ultrasonic waves are one of the constituents in the shock treatment of certain types of gallstones and CALCULI in the urinary tract (see LITHOTRIPSY). They are also being used in the treatment of MENIÈRE’S DISEASE and of bruises and strains. In this ?eld of physiotherapy, ultrasonic therapy is proving of particular value in the treatment of acute injuries of soft tissue. If in such cases it is used immediately after the injury, or as soon as possible thereafter, prompt recovery is facilitated. For this reason it is being widely used in the treatment of sports injuries (see also SPORTS MEDICINE). The sound waves stimulate the healing process in damaged tissue.

Doppler ultrasound is a technique which shows the presence of vascular disease in the carotid and peripheral vessels, as it can detect the reduced blood ?ow through narrowed vessels.

Ultrasound in obstetrics Ultrasound has particular applications in obstetrics. A fetus can be seen with ultrasound from the seventh week of pregnancy, and the fetal heart can be demonstrated at this stage. Multiple pregnancy can also be diagnosed at this time by the demonstration of more than one gestation sac containing a viable fetus. A routine obstetric scan is usually performed between the 16th and 18th week of pregnancy when the fetus is easily demonstrated and most photogenic. The fetus can be measured to assess the gestational age, and the anatomy can also be checked. Intra-uterine growth retardation is much more reliably diagnosed by ultrasound than by clinical assessment. The site of the placenta can also be recorded and multiple pregnancies will be diagnosed at this stage. Fetal movements and even the heartbeat can be seen. A second scan is often done between the 32nd and 34th weeks to assess the position, size and growth rate of the baby. The resolution of equipment now available enables pre-natal diagnosis of a wide range of structural abnormalities to be diagnosed. SPINA BIFIDA, HYDROCEPHALUS and ANENCEPHALY are probably the most important, but other anomalies such as multicystic kidney, achondroplasia and certain congenital cardiac anomalies can also be identi?ed. Fetal gender can be determined from 20 weeks of gestation. Ultrasound is also useful as guidance for AMNIOCENTESIS.

In gynaecology, POLYCYSTIC OVARY SYNDROME can readily be detected as well as FIBROID and ovarian cysts. Ultrasound can monitor follicular growth when patients are being treated with infertility drugs. It is also useful in detecting ECTOPIC PREGNANCY. (See also PREGNANCY AND LABOUR.)... ultrasound

Skeleton

n. the rigid framework of connected *bones that gives form to the body, protects and supports its soft organs and tissues, and provides attachments for muscles and a system of levers essential for locomotion. The 206 named bones of the body are organized into the axial skeleton (of the head and trunk) and the appendicular skeleton (of the limbs). See illustration overleaf. —skeletal adj.... skeleton



Recent Searches