Refer: ALCOHOLISM, CATARACT, CONJUNCTIVITIS, DIABETES, ECLAMPSIA, GLAUCOMA, IRITIS, MIGRAINE, MULTIPLE SCLEROSIS, RETINITIS, SHOCK.
Indistinct or fuzzy visual images. Blurred vision, which should not be confused with double vision (diplopia), can occur in 1 eye or both, for episodes of varying lengths of time, and can develop gradually or suddenly. The usual cause of longstanding blurred vision is a refractive error such as astigmatism (unequal curvature of the front of the eye), hypermetropia (longsightedness), or myopia (shortsightedness), all of which can be corrected by glasses or contact lenses. After the age of 40, presbyopia (reduced ability to focus on near objects) becomes more common.
Vision may also be impaired or blurred as a result of damage, disease, or abnormalities of parts of the eye or its connections to the brain.
The most common causes of blurred vision as a result of disease are cataract and retinopathy.
Broadly speaking, vision is the ability to see.
Pathway of light from the eye to the brain Light enters the EYE by passing through the transparent cornea, then through the aqueous humour ?lling the anterior chamber. It then passes through the pupil, through the lens and the vitreous to reach the retina. In the retina, the rod and cone photoreceptors detect light and relay messages in the form of electrochemical impulses through the various layers of the retina to the nerve ?bres. The nerve ?bres carry messages via the optic nerve, optic chiasma, optic tract, lateral geniculate body and ?nally the optic radiations to the visual cortex.
Here in the visual cortex these messages are interpreted. It is therefore the visual cortex of the BRAIN that ‘sees’.
Visual acuity Two points will not be seen as two unless they are separated by a minimum distance. This distance is such that the objects are so far apart that the lines joining them to the eye enclose between them (subtend) an angle of at least one minute of a degree. This amount of separation allows the images of the two points to fall on two separate cones (if the light from two points falls on one cone, the two points would be seen as a single point). There are many tests of visual acuity. One of the more common is the Snellen test type. This is made up of many letters of di?erent size. By conventions the chart is placed 6 metres away from the patient. Someone able to see the lowest line at this distance has a visual acuity of 6/4. If they are only able to see the top letter they have 6/60 vision. ‘Normal’ vision is 6/6.
Colour vision ‘White light’ is made up of component colours. These can be separated by a prism, thereby producing a spectrum. The three cardinal colours are red, green, and blue; all other colours can be produced by a varying mixture of these three. Colour vision is a complex subject. The trichromat theory of colour vision suggests that there are three types of cones, each type sensitive to one of the cardinal colours. Colour perception is based on di?erential stimulation of these cone types. The opponent colour theory suggests that each cone type can generate signals of the opposite kind. Output from some cones can collaborate with the output from others or can inhibit the action of other cones. Colour perception results from these various complex interactions.
Defective colour vision may be hereditary or acquired, and can occur in the presence of normal visual acuity. HEREDITARY DEFECTIVE COLOUR VISION is more common in men (7 per cent of males) than women (0·5 per cent of females). Men are affected, but women convey the abnormal gene (see GENES) to their children. It occurs because one or more of the photopigments of the retina are abnormal, or the cones are damaged. Red-green colour defect is the most common. ACQUIRED DEFECTIVE COLOUR VISION is the result of disease of the cones or their connections in the retina, optic nerve or brain – for example, macular disease, optic neuritis. Col-our vision can be impaired but not lost as a result of corneal opaci?cation or cataract formation (see under EYE, DISORDERS OF).
TESTS OF COLOUR VISION These use specially designed numbers made of coloured dots surrounded by dots of confusing colour (e.g. plates).... vision
Most vision tests examine a person’s sharpness of VISION (visual acuity) and often of the ?eld of vision (see VISION, FIELD OF). Refraction tests assess whether a person has an error that can be corrected with glasses such as ASTIGMATISM, HYPERMETROPIA or MYOPIA. Visual acuity is tested using a Snellen chart when the patient tries to read letters of di?ering standard sizes from 6 metres away. The optician will prescribe lenses to correct any defects detected by vision tests.... vision tests
The list of disorders resulting in poor or dim vision is huge. Disturbance of vision can result from an uncorrected refractive error, disease or injury of the cornea, iris, lens, vitreous, retina, choroid or sclera of the EYE. It may also result from disease or injury to the structures comprising the visual pathway from the retina to the occipital cortex (see VISION – Pathway of light from the eye to the brain) and from lesions of the structures around the eye – for example, swollen lids, drooping eyelids. (See EYE, DISORDERS OF.)... vision, disorders of
the ability to focus both eyes on an object at the same time, so that a person sees one image of the object he is looking at. It is not inborn, but acquired during the first few months of life. Binocular vision enables judgment of distance and perception of depth. See also stereoscopic vision.... binocular vision
Any abnormality in colour vision that causes difficulty distinguishing between certain colours. Total absence of colour vision (monochromatism) is rare. The most common types of colour vision deficiency are reduced discrimination of red and green. Most cases of red and green colour vision deficiency are caused by defects in the light-sensitive cells in the retina. These defects are usually inherited, although occasionally defects are caused by retinal or optic nerve diseases or injury. The inherited defects tend to be sex-linked (see genetic disorders), which means that the majority of sufferers are male. A person with a severe green deficiency has difficulty distinguishing oranges, greens, browns, and pale reds. In severe red deficiency, all reds appear dull. A much rarer deficiency in which blue cannot be distinguished may be inherited or may be due to degeneration of the retina or optic nerve.... colour vision deficiency
(stereopsis) perception of the shape, depth, and distance of an object as a result of having *binocular vision. The brain receives two distinct images from the eyes, which it interprets as a single three-dimensional image.... stereoscopic vision