Deficiency. Rare. Hypoglycaemia, arteriosclerosis, heart disease. Depression, irritability, sudden mood swings. A lack of Chromium may result in diabetes in young adults, and a craving for sweet foods (sugar, chocolate).
Body effects. Metabolism of sugars and fats. Blood sugar regulator. Builds up muscle. Lowers cholesterol levels. Encourages the body’s insulin to perform effectively. Suppresses appetite – especially craving for sugar, chocolate etc. Sportsperson’s mineral to build muscle and reduce fat.
Sources. Red meat, liver, kidney, cheese, mushrooms, wholegrain cereals, brewer’s yeast, fresh fruits, nuts, honey, molasses, corn oil, raisins, grapes, beets, peppers, shellfish. ... chromium
Sometimes during cell division chromosomes may be lost or duplicated, or abnormalities in the structure of individual chromosomes may occur. The surprising fact is the infrequency of such errors. About one in 200 live-born babies has an abnormality of development caused by a chromosome, and two-thirds of these involve the sex chromosomes. There is little doubt that the frequency of these abnormalities in the early embryo is much higher, but because of the serious nature of the defect, early spontaneous ABORTION occurs.
Chromosome studies on such early abortions show that half have chromosome abnormalities, with errors of autosomes being three times as common as sex chromosome anomalies. Two of the most common abnormalities in such fetuses are triploidy with 69 chromosomes and trisomy of chromosome 16. These two anomalies almost always cause spontaneous abortion. Abnormalities of chromosome structure may arise because of:
Deletion Where a segment of a chromosome is lost.
Inversion Where a segment of a chromosome becomes detached and re-attached the other way around. GENES will then appear in the wrong order and thus will not correspond with their opposite numbers on homologous chromosomes.
Duplication Where a segment of a chromosome is included twice over. One chromosome will have too little nuclear material and one too much. The individual inheriting too little may be non-viable and the one with too much may be abnormal.
Translocation Where chromosomes of different pairs exchange segments.
Errors in division of centromere Sometimes the centromere divides transversely instead of longitudinally. If the centromere is not central, one of the daughter chromosomes will arise from the two short arms of the parent chromosome and the other from the two long arms. These abnormal daughter chromosomes are called isochromosomes.
These changes have important bearings on heredity, as the e?ect of a gene depends not only upon its nature but also upon its position on the chromosome with reference to other genes. Genes do not act in isolation but against the background of other genes. Each gene normally has its own position on the chromosome, and this corresponds precisely with the positon of its allele on the homologous chromosome of the pair. Each member of a pair of chromosomes will normally carry precisely the same number of genes in exactly the same order. Characteristic clinical syndromes, due to abnormalities of chromosome structure, are less constant than those due to loss or gain of a complete chromosome. This is because the degree of deletion, inversion and duplication is inconstant. However, translocation between chromosomes 15 and 21 of the parent is associated with a familial form of mongolism (see DOWN’S (DOWN) SYNDROME) in the o?spring, and deletion of part of an X chromosome may result in TURNER’S SYNDROME.
Non-disjunction Whilst alterations in the structure of chromosomes arise as a result of deletion or translocation, alterations in the number of chromosomes usually arise as a result of non-disjunction occurring during maturation of the parental gametes (germ cells). The two chromosomes of each pair (homologous chromosomes) may fail to come together at the beginning of meiosis and continue to lie free. If one chromosome then passes to each pole of the spindle, normal gametes may result; but if both chromosomes pass to one pole and neither to the other, two kinds of abnormal gametes will be produced. One kind of gamete will contain both chromosomes of the pair, and the other gamete will contain neither. Whilst this results in serious disease when the autosomes are involved, the loss or gain of sex chromosomes seems to be well tolerated. The loss of an autosome is incompatible with life and the malformation produced by a gain of an autosome is proportional to the size of the extra chromosome carried.
Only a few instances of a gain of an autosome are known. An additional chromosome 21 (one of the smallest autosomes) results in mongolism, and trisomy of chromosome 13 and 18 is associated with severe mental, skeletal and congenital cardiac defects. Diseases resulting from a gain of a sex chromosome are not as severe. A normal ovum contains 22 autosomes and an X sex chromosome. A normal sperm contains 22 autosomes and either an X or a Y sex chromosome. Thus, as a result of nondisjunction of the X chromosome at the ?rst meiotic division during the formation of female gametes, the ovum may contain two X chromosomes or none at all, whilst in the male the sperm may contain both X and Y chromosomes (XY) or none at all. (See also CHROMOSOMES; GENES.)... sex chromosomes
Herbs are composed of alkaloids, saponins, esters, oils etc. In order to trace these in sample plant material, a picture is taken by a process known as Thin-layer-chromatography (TLC) on which a silica- gel coated ‘negative’ makes visible a number of constituents.
To initiate this process, active constituents (alkaloids etc) are extracted and separated. Their separation is possible by dipping into a special solvent solution, after which the ‘negative’ is developed by spraying with a reagent that reveals the constituents in various colours. Each component of the plant has its own distinctive colour. Each herb has its own specific ‘profile’ which can be ‘read’ by the technician and checked against known control samples. Each plant can thus be accurately identified. ... chromatography
Autosomal abnormalities cause physical and mental defects of varying severity. Some types of autosomal abnormality, known as trisomy, consist of an extra chromosome on 1 of the 22 pairs of autosomes. The most common trisomy is Down’s syndrome. Sometimes, part of a chromosome is missing, as in cri du chat syndrome. In translocation, a part of a chromosome is joined to another, causing no ill effects in the person but a risk of abnormality in his or her children.
Sex chromosome abnormalities include Turner’s syndrome, in which a girl is born with a single X chromosome in her
cells instead of 2, causing physical abnormalities, defective sexual development, and infertility. A boy with 1 or more extra X chromosomes has Klinefelter’s syndrome, which causes defective sexual development and infertility. The presence of an extra X chromosome in women or an extra Y chromosome in men normally has no physical effect but increases the risk of mild mental handicap.
Chromosomal abnormalities are diagnosed by chromosome analysis in early pregnancy, using amniocentesis or chorionic villus sampling.... chromosomal abnormalities
Chromosome analysis in children and adults uses white blood cells taken from a blood sample. Analysis of the sex chromosomes may be carried out to establish the chromosomal sex of a child in cases where the genitals have an ambiguous appearance (see genitalia, ambiguous); to confirm or exclude the diagnosis of chromosomal abnormalities; or to investigate infertility.... chromosome analysis