A method of recording movements of the eyes, which is of value in assessing the function of the retina (see EYE.)
Piper longumPiperaceae: San: Pippali;Hin, Ben, Pun: Piplamul; Kan, Mal:Thippali ;Tam: Thippili; Mar: Pimpli;Tel: Pipppaloo; Ass: Piplu.Introduction: Long pepper is a slender aromatic climber whose spike is widely used in ayurvedic and unani systems of medicine particularly for diseases of respiratory tract. Pipalarishta, Pippalyasava, Panchakola, Pippalayadilauha, and Lavana bhaskar churan are common ayurvedic preparations made out of the dry spikes of female types. Ittrifal fauladi, Angaruya-i-kabir and Majun khadar are well known unani preparations of long pepper. Its roots also have several medicinal uses. The root is useful in bronchitis, stomach ache, diseases of spleen and tumours. Fruit is useful in vata and kapha, asthma, bronchitis, abdominal complaints, fever, leucoderma, urinary discharges, tumours, piles, insomnia and tuberculosis. Root and fruit are used in gout and lumbago. The infusion of root is prescribed after parturition to induce the expulsion of placenta. The root and fruit decoction are used in acute and chronic bronchitis and cough. It contains the alkaloid piperine which has diverse pharmacological activities, including nerve depressant and antagonistic effect on electro- shock and chemo -shock seizures as well as muscular incoordination.Distribution: The plant is a native of Indo-Malaya region. It was very early introduced to Europe and was highly regarded as a flavour ingredient by the Romans. The Greek name “Peperi”, the Latin “Piper” and the English “Pepper” were derived from the Sanskrit name “Pippali”. It grows wild in the tropical rain forests of India, Nepal, Indonesia, Malaysia, Sri lanka, Rhio, Timor and the Philippines. In India, it is seen in Assam, West Bengal, Uttar Pradesh, Madhya Pradesh, Maharashtra, Kerala, Karnataka.and Tamil Nadu. It is also cultivated in Bengal, Chirapunchi area of Assam, Akola-Amravati region of Maharashtra, Anamalai hills of Tamil Nadu, Orissa, Uduppi and Mangalore regions of Karnataka. Bulk of Indian long pepper comes from its wild growth in Assam, Shillong and West Bengal, supplemented by imports from Sri Lanka and Indonesia (Viswanathan,1995)Botany: Piper longum Linn. is a member of Piperaceae family. The plant is a glabrous perennial under-shrub with erect or sub-scandent nodose stem and slender branches, the latter are often creeping or trailing and rooting below or rarely scandent reaching a few metres height. Leaves are simple, alternate, stipulate, and petiolate or nearly sessile; lower ones broadly ovate, cordate; upper ones oblong, oval, all entire, smooth, thin with reticulate venation; veins raised beneath. It flowers nearly throughout the year. Inflorescence is spike with unisexual small achlamydeous densely packed flowers and form very close clusters of small greyish green or darker grey berries. Female spikes with short thick stalk varying from 1.5 to2.5 cm in length and 0.5 to 0.7 cm in thickness.A number of geographical races are available in different agroclimatic regions of India; the most popular being Assam, West Bengal and Nepal races. Piper officinarum DC; syn. Chavica officinarum Miquel, Piper pepuloides and Piper chaba Hunter are the other related species of importance.Agrotechnology: Long pepper is a tropical plant adapted to high rainfall areas with high humidity. An elevation of 100-1000 m is ideal. It needs partial shade to the tune of 20-30% for best growth. The natural habitat of the plant is on the borders of streams. It is successfully cultivated in well drained forest soils rich in organic matter. Laterite soils with high organic matter content and moisture holding capacity are also suitable for cultivation.Long pepper is propagated by suckers or rooted vine cuttings.15-20 cm long 3-5 nodded rooted vine cuttings establishes very well in polybags. The best time for raising nursery is March-April. Normal irrigation is given on alternate days. The rooted cuttings will be ready for transplanting in 2 months time. With the onset of monsoon in June the field is ploughed well and brought to good tilth. 15-20 cm raised beds of convenient length and breadth are taken. On these beds, pits are dug at 60 x 60 cm spacing and well decomposed organic manure at 100 g/pit is applied and mixed with the soil. Rooted vine cuttings from polybags are transplanted to these pits. Gap filling can be done after one month of planting.The crop needs heavy manuring at the rate of 20 t FYM/ha every year. Application of heavy dose organic matter and mulching increase water retention in the soil and control weeds. Small doses of chemical fertilisers can also be used. The crop needs irrigation once a week. Sprinkler irrigation is ideal. With irrigation the crop continues to produce spikes and off-season produce will be available. However, it is reported that unirrigated crop after the onset of monsoon grows vigorously and shows much hardiness than the irrigated crop.Crop losses can be heavy due to pests and diseases. Mealy bugs and root grubs, attack the plant particularly during summer. Infested plants show yellowing and stunted growth. Application of systemic insecticides like nuvacron or dimecron will control the pests. Adults and nymphs of Helopeltis theivora severely feeds on the foliage which can be controlled by 0.25% neem kernel suspension. Rotting of leaves and vines during monsoon season is caused by Colletotrichum glorosporiodes and necrotic lesions and blights on the leaves during summer is caused by Colletotrichum and Cercospora spp. These diseases can be controlled by spraying of 1% Bordeaux mixture repeatedly. A virus like disease characterised by yellowing and crinkling of leaves, stunted growth and production of spikes of smaller size and inferior quality was also recently reported.The vines start flowering six months after planting and flowers are produced almost throughout the year. The spikes mature in 2 months time. The optimum stage of harvest is when the spikes are blackish green. The pungency is highest at this stage. Spikes are hand picked when they become mature and then dried. The yield of dry spike is 400 kg /ha during first year, increases to 1000kg during third year and thereafter it decreases. Therefore, after 3 years the whole plant is harvested. The stem is cut close to the ground and roots are dug up. Average yield is 500 kg dry roots/ha (Viswanathan,1995).Piper longum can also be cultivated as an intercrop in plantations of coconut, subabul and eucalyptus.Post harvest technology: The harvested spikes are dried in sun for 4-5 days until they are perfectly dry. The green to dry spike ratio is 10:1.5 by weight. The dried spikes have to be stored in moisture proof containers. Stem and roots are cleaned, cut into pieces of 2.5-5 cm length, dried in shade and marketed as piplamool. There are three grades of piplamool, based on the thickness. The commercial drug consists 0.5-2.5 cm long ,0.5-2.5 mm thick, cylindrical pieces dirty light brown in colour and peculiar odour with a pungent bitter taste, producing numbness to the tongue.Properties and activity: The spike of long pepper contains 4-5% piperine, piplartin, piperolactam, N-isobutyl deca trans-2-trans-4-dienamide and piporadione alkaloides, besides 0.7 % essential oil. Roots gave the alkaloids piperine, piperlongumine (piplartine) and piperlonguminine; sesamine, methyl 3, 4, 5-trimethoxy cinnamate. Stem gave triacoutane 22, 23 - dihydrostigmasterol. Fruit essential oil contains piperidine, caryophyllene and sesquiterpene alcohol (Atal et al, 1975).The root is plungent, hot, stomachic, laxative, anthelmintic and carminative. The fruit is sweetish, pungent, hot, stomachic, aphrodisiac, alterative, laxative, antidysenteric, emmenagogue, abortifacient, diuretic and tonic. The essential oil is antimicrobial and anthelmintic.N-isobutyl-deca-trans-2-trans-4-dienamide is antitubercular.Piperine is hypotensive, antipyretic, analeptic, and nerve stimulant (Warrier et al, 1995).... long pepper
Also known as Röntgen rays, these were discovered in 1895 by Wilhelm Conrad Röntgen. Their use for diagnostic imaging (radiology) and for cancer therapy (see RADIOTHERAPY) is now an integral part of medicine. Many other forms of diagnostic imaging have been developed in recent years, sometimes also loosely called ‘radiology’. Similarly the use of chemotherapeutic agents in cancer has led to the term oncology which may be applied to the treatment of cancer by both drugs and X-rays.
The rays are part of the electro-magnetic spectrum; their wavelengths are between 10?9 and 10? 13 metres; in behaviour and energy they are identical to the gamma rays emitted by radioactive isotopes. Diagnostic X-rays are generated in an evacuated tube containing an anode and cathode. Electrons striking the anode cause emission of X-rays of varying energy; the energy is largely dependent on the potential di?erence (kilovoltage) between anode and cathode. The altered tissue penetration at di?erent kilovoltages is used in radiographing di?erent regions, for example in breast radiography (25–40 kV) or chest radiography (120–150 kV). Most diagnostic examinations use kilovoltages between 60 and 120. The energy of X-rays enables them to pass through body tissues unless they make contact with the constituent atoms. Tissue attenuation varies with atomic structure, so that air-containing organs such as the lung o?er little attenuation, while material such as bone, with abundant calcium, will absorb the majority of incident X-rays. This results in an emerging X-ray pattern which corresponds to the structures in the region examined.
Radiography The recording of the resulting images is achieved in several ways, mostly depending on the use of materials which ?uoresce in response to X-rays. CONTRAST X-RAYS Many body organs are not shown by simple X-ray studies. This led to the development of contrast materials which make particular organs or structures wholly or partly opaque to X-rays. Thus, barium-sulphate preparations are largely used for examining the gastrointestinal tract: for example, barium swallow, barium meal, barium follow-through (or enteroclysis) and barium enema. Water-soluble iodine-containing contrast agents that ionise in solution have been developed for a range of other studies.
More recently a series of improved contrast molecules, chie?y non-ionising, has been developed, with fewer side-effects. They can, for example, safely be introduced into the spinal theca for myeloradiculography – contrast X-rays of the spinal cord. Using these agents, it is possible to show many organs and structures mostly by direct introduction, for example via a catheter (see CATHETERS). In urography, however, contrast medium injected intravenously is excreted by the kidneys which are outlined, together with ureters and bladder. A number of other more specialised contrast agents exist: for example, for cholecystography – radiological assessment of the gall-bladder. The use of contrast and the attendant techniques has greatly widened the range of radiology. IMAGE INTENSIFICATION The relative insensitivity of ?uorescent materials when used for observation of moving organs – for example, the oesophagus – has been overcome by the use of image intensi?cation. A faint ?uorographic image produced by X-rays leads to electron emission from a photo-cathode. By applying a high potential di?erence, the electrons are accelerated across an evacuated tube and are focused on to a small ?uorescent screen, giving a bright image. This is viewed by a TV camera and the image shown on a monitor and sometimes recorded on videotape or cine. TOMOGRAPHY X-ray images are two-dimensional representations of three-dimensional objects. Tomography (Greek tomos
– a slice) began with X-ray imaging produced by the linked movement of the X-ray tube and the cassette pivoting about a selected plane in the body: over- and underlying structures are blurred out, giving a more detailed image of a particular plane.
In 1975 Godfrey Houns?eld introduced COMPUTED TOMOGRAPHY (CT). This involves
(i) movement of an X-ray tube around the patient, with a narrow fan beam of X-rays; (ii) the corresponding use of sensitive detectors on the opposite side of the patient; (iii) computer analysis of the detector readings at each point on the rotation, with calculation of relative tissue attenuation at each point in the cross-sectional plant. This invention has enormously increased the ability to discriminate tissue composition, even without the use of contrast.
The tomographic e?ect – imaging of a particular plane – is achieved in many of the newer forms of imaging: ULTRASOUND, magnetic resonance imaging (see MRI) and some forms of nuclear medicine, in particular positron emission tomography (PET SCANNING). An alternative term for the production of images of a given plane is cross-sectional imaging.
While the production of X-ray and other images has been largely the responsibility of radiographers, the interpretation has been principally carried out by specialist doctors called radiologists. In addition they, and interested clinicians, have developed a number of procedures, such as arteriography (see ANGIOGRAPHY), which involve manipulative access for imaging – for example, selective coronary or renal arteriography.
The use of X-rays, ultrasound or computerised tomography to control the direction and position of needles has made possible guided biopsies (see BIOPSY) – for example, of pancreatic, pulmonary or bony lesions – and therapeutic procedures such as drainage of obstructed kidneys (percutaneous nephrostomy), or of abscesses. From these has grown a whole series of therapeutic procedures such as ANGIOPLASTY, STENT insertion and renal-stone track formation. This ?eld of interventional radiology has close a?nities with MINIMALLY INVASIVE SURGERY (MIS).
Radiotherapy, or treatment by X-rays The two chief sources of the ionising radiations used in radiotherapy are the gamma rays of RADIUM and the penetrating X-rays generated by apparatus working at various voltages. For super?cial lesions, energies of around 40 kilovolts are used; but for deep-seated conditions, such as cancer of the internal organs, much higher voltages are required. X-ray machines are now in use which work at two million volts. Even higher voltages are now available through the development of the linear accelerator, which makes use of the frequency magnetron which is the basis of radar. The linear accelerator receives its name from the fact that it accelerates a beam of electrons down a straight tube, 3 metres in length, and in this process a voltage of eight million is attained. The use of these very high voltages has led to the development of a highly specialised technique which has been devised for the treatment of cancer and like diseases.
Protective measures are routinely taken to ensure that the patient’s normal tissue is not damaged during radiotherapy. The operators too have to take special precautions, including limits on the time they can work with the equipment in any one period of time.
The greatest value of radiotherapy is in the treatment of malignant disease. In many patients it can be used for the treatment of malignant growths which are not accessible to surgery, whilst in others it is used in conjunction with surgery and chemotherapy.... x-rays