Enzymes Health Dictionary

Enzymes: From 1 Different Sources


An enzyme is a substance produced in the body, acting as a catalyst to trigger chemical change in another. Complex substances are thereby broken down into simple compounds to facilitate assimilation and absorption, as in the digestive juices. 
Health Source: Bartrams Encyclopedia of Herbal Medicine
Author: Health Encyclopedia

Magnesium

Magnesium is a light metallic element; it is one of the essential mineral elements of the body, without which the body cannot function properly. The adult body contains around 25 grams of magnesium, the greater part of which is in the bones. More than two-thirds of our daily supply comes from cereals and vegetables; as most other foods also contain useful amounts, there is seldom any di?culty in maintaining an adequate amount in the body. Magnesium is also an essential constituent of several vital enzymes (see ENZYME). De?ciency leads to muscular weakness and interferes with the e?cient working of the heart. The salts of magnesium used as drugs are the hydroxide of magnesium, the oxide of magnesium – generally known as ‘magnesia’ – and the carbonate of magnesium, all of which have an antacid action; also the sulphate of magnesium known as ‘Epsom salts’, which acts as a purgative.

Uses Compounds of magnesia are used to correct hyperacidity of the stomach and as a laxative (see LAXATIVES).... magnesium

Pancreas

This is a gland situated above the navel in the abdominal cavity that extends from the left side to the center, with its head tucked into the curve of the duodenum. It is 6-8 inches long, weighs 3 or 4 ounces, secretes pancreatic enzymes and alkali into the duodenum in concert with the gallbladder and liver, and secretes the hormones insulin and glucagon into the blood. Insulin acts to facilitate the absorption of blood glucose into fuel-needing cells, and glucagon stimulates a slow release of glucose from the liver, primarily to supply fuel to the brain. That most cherished organ uses one-quarter of the sugar in the blood and has no fuel storage. Pancreatic enzymes are basically those that digest fats, carbohydrates and proteins into their smaller components of fatty acids+glycerol, maltose, and amino acids...as well as curdling milk (thought you might want to know).... pancreas

Pancreatin

Pancreatin preparations (often in the form of a powder) contain the four powerful enzymes (see ENZYME), trypsin, chymotrypsin, lipase, and amylase, which continue the digestion of foods started in the stomach (see PANCREAS – Functions; DIGESTION). They are given by mouth for the relief of pancreatic de?ciency in conditions such as pancreatitis (see PANCREAS, DISORDERS OF) and CYSTIC FIBROSIS. Pancreatin is also used for the preparation of pre-digested, or so-called peptonised, foods, such as milk and some starchy foods.... pancreatin

Cystic Fibrosis

This is the most common serious genetic disease in Caucasian children, with an incidence of about one per 2,500 births, and more than 6,000 patients in the UK (30,000 in the USA). It is an autosomal recessive disorder of the mucus-secreting glands of the lungs, the pancreas, the mouth, and the gastrointestinal tract, as well as the sweat glands of the skin. The defective gene is sited on chromosome 7 which encodes for a protein, cystic ?brosis transmembrane conductance regulator (CFTR). Individuals who inherit the gene only on one set of chromosomes can, however, carry the defect into successive generations. Where parents have a child with cystic ?brosis, they have a one-infour chance of subsequent children having the disease. They should seek GENETIC COUNSELLING.

The disorder is characterised by failure to gain weight in spite of a good appetite, by repeated attacks of bronchitis (with BRONCHIECTASIS developing at a young age), and by the passage of loose, foul-smelling and slimy stools (faeces). AMNIOCENTESIS, which yields amniotic ?uid along with cells shed from the fetus’s skin, can be used to diagnose cystic ?brosis prenatally. The levels of various enzymes can be measured in the ?uid and are abnormal when the fetus is affected by cystic ?brosis. Neonatal screening is possible using a test on blood spots – immunoreactive trypsin (IRT).

In children with symptoms or a positive family history, the disease can be tested for by measuring sweat chloride and sodium. This detects the abnormal amount of salt that is excreted via the sweat glands when cystic ?brosis is present. Con?rmation is by genetic testing.

Treatment This consists basically of regular physiotherapy and postural drainage, antibiotics and the taking of pancreatic enzyme tablets and vitamins. Some children need STEROID treatment and all require nutritional support. The earlier treatment is started, the better the results. Whereas two decades ago, only 12 per cent of affected children survived beyond adolescence, today 75 per cent survive into adult life, and an increasing number are surviving into their 40s. Patients with end-stage disease can be treated by heart-lung transplantation (with their own heart going to another recipient). Research is underway on the possible use of GENE THERAPY to control the disorder. Parents of children with cystic ?brosis, seeking help and advice, can obtain this from the Cystic Fibrosis Trust.... cystic fibrosis

Enzyme

A protein that acts as a catalyst for the body’s metabolic processes. The body contains thousands of enzymes, with each cell producing several varieties. The ?rst enzyme was obtained in a reasonably pure state in 1926. Since then, several hundred enzymes have been obtained in pure crystalline form. They are present in the digestive ?uids and in many of the tissues, and are capable of producing in small amounts the transformation on a large scale of various compounds. Examples of enzymes are found in the PTYALIN of saliva and DIASTASE of pancreatic juice which split up starch into sugar; the PEPSIN of the gastric juice and the trypsin of pancreatic juice which break proteins into simpler molecules and eventually into the constituent amino acids; and the thrombin of the blood which causes coagulation.

The diagnosis of certain disorders can be helped by measuring the concentrations of various enzymes in the blood. After a heart attack (myocardial infarction – see HEART, DISEASES OF), raised levels of heart enzymes occur as a result of damage to the cells of the heart muscle. Some inherited diseases such as GALACTOSAEMIA and PHENYLKETONURIA are the result of de?ciencies of certain enzymes.

Enzymes can be a useful part of treatment for some disorders. STREPTOKINASE, for example, is used to treat THROMBOSIS; wound-dressings containing papain from the pawpaw fruit – this contains protein-digesting enzymes – assist in the healing process; and pancreatic enzymes can be of value to patients with malabsorption caused by disorders of the PANCREAS.... enzyme

Iron

Mineral. Essential for production of haemoglobin (see entry). Haemoglobin absorbs oxygen from the lungs from which it is borne throughout the body by the red blood cells. Iron is a component of enzymes that play a vital role in oxidation of food and release of energy. As the metal is not produced in the body it has to be obtained from external sources. Iron is also conserved by the body following breakdown of old red blood corpuscles. RDA 10mg (men), 12mg (women), 13mg (pregnant women), 15mg (nursing mothers).

Deficiency. Iron-deficiency anaemia is the most common deficiency disease in the world. Children require adequate level for cell growth and healthy development. Senior citizens may have inability to absorb. Sportspeople carefully watch their iron levels.

Studies reveal that iron absorption is reduced by coffee consumption. A single cup of coffee can effect a reduction of 30 per cent when consumed at the same time iron or iron containing foods are taken. (American Journal of Clinical Medicine, 1983)

Sources. Red meat, liver, kidney, almonds, dried fruits (especially figs), All Bran, spinach, watercress. Herbs. All seaweeds. Burdock, Devil’s Claw, Couch Grass root, Meadowsweet, Mullein, Rest Harrow, Nettles, Toadflax, Wild Strawberry leaves, Yellow Dock, Gotu Kola, Parsley, Silverweed.

Floradix Herbal Iron Extract: absorbable iron in a yeast extract dietary supplement. Contents include Nettles, Fennel, Angelica root, Horsetail, Spinach, Yarrow, etc. ... iron

Antibiotics

Antibiotic is the term used to describe any antibacterial agent derived from micro-organisms, although most of them are now prepared synthetically. Such agents destroy or inhibit the growth of other micro-organisms: examples are penicillin, cephalosporin, amino-glycosides, streptomycin, and tetracycline.

Penicillin was the ?rst antibiotic to be discovered and used in the 1940s. The discovery and isolation in 1958 of the penicillin nucleus, 6-amino penicillanic acid (6-PNA), allowed many new penicillins to be synthesised. These are now the largest single group of antibiotics used in clinical medicine. Most staphylococci (see STAPHYLOCOCCUS) have now developed resistance to benzylpenicillin, the early form of the drug, because they produce penicillinases – enzymes which break down the drug. Other types of penicillin such as cloxacillin and ?ucoxacillin are not affected and are used against penicillin-resistant staphylococci.

The cephalosporins are derived from the compound cephalosporin C, which is obtained by fermentation of the mould cephalosporium.

The cephalosporin nucleus 7 amino cephalosporanic (7-ICA) acid has been the basis for the production of the semi-synthetic compounds of the cephalosporin nucleus. The ?rst semi-synthetic cephalosporin, cephalothin, appeared in 1962; it was followed by cephaloridine in 1964. The original cephalosporins had to be given by injection, but more recent preparations can be given by mouth. The newer preparations are less readily destroyed by betalactamases and so they have a much broader spectrum of antibacterial activity. The newer cephalosporins include cephalexin, cefazolin, cephacetrile, cephapirin, cefamandole, cefuroxine, cephrodine, cefodroxil and cefotaxine. Inactivation of beta-lactamase is the basis of bacterial resistance both to the penicillins and to the cephalosporins, so that attempts to prepare these antibiotics with resistance to betalactamase is of great importance. A synthetic inhibitor of beta-lactamase called clavulanic acid has been synthesised; this is used in combination with the penicillins and cephalosporins to prevent resistance. The cephamycins are a new addition to the beta-lactam antibiotics. They are similar in structure to the cephalosporins but are produced, not by fungi, but by actinomycetes.

Overuse and misuse of antibiotics have resulted in many bacteria becoming resistant to them. Hospitals, in particular, have problems with METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA). Combinations of antibiotics are needed to combat resistant strains of bacteria, another example being Mycobacterium tuberculosis.... antibiotics

Autolysis

The disintegration and softening of dead cells brought about by enzymes (see ENZYME) in the cells themselves.... autolysis

Cysteine

An amino acid containing SULPHUR that is an essential constituent of many of the body’s enzymes. (See AMINO ACIDS; ENZYME.)... cysteine

Hellp Syndrome

A type of severe PRE-ECLAMPSIA (a disorder affecting some pregnant women) that affects various systems in the body. HAEMOLYSIS, raised concentration of the enzymes in the LIVER, and a low blood platelet count are among the characteristics (and explain the name HELLP); patients are acutely ill and immediate termination of pregnancy is necessary. (See also PREGNANCY AND LABOUR.)... hellp syndrome

Proteolysis

The mechanism by which complex PROTEIN molecules are broken down by digestive enzymes (see PROTEASE) in the stomach and small intestine. The constituent AMINO ACIDS are then absorbed into the bloodstream.... proteolysis

Pseudocyst

A space within an organ without a de?ned lining and which contains ?uid. Patients with chronic pancreatitis (see PANCREAS, DISORDERS OF) sometimes develop these pseudocysts which ?ll with pancreatic juice containing enzymes produced by the gland. Abdominal pain usually results; treatment is by surgical draining.... pseudocyst

Rennin

A milk-coagulating ENZYME produced by the lining of the stomach. Rennin converts milk protein (caseinogen) into insoluble casein, thus ensuring that milk stays in the stomach for some time, during which it can be digested by various enzymes before passing into the small intestine.... rennin

Succus Entericus

Intestinal Juice. These are enzyme-rich secretions produced by the lining of the upper small intestines. Apparently the enzymes produced compensate for any pancreatic enzymes that are deficient for that particular meal.... succus entericus

Cholecystokinin

A gastrointestinal hormone produced in the duodenum in response to the ingestion of fats and other food substances.

It stimulates the release of bile from the gallbladder and digestive enzymes from the pancreas, thus facilitating the digestive process.... cholecystokinin

Papain

A naturally occurring mixture of enzymes, including chymopapain, which is found in pawpaws. Papain breaks down proteins and has been used to remove clotted blood and dead tissue from wounds and ulcers.... papain

Duodenum

This is the beginning of the small intestines, and it empties the stomach. It is 9 or 10 inches long, holds about the same amount of food as the digestive antrum or bottom of the stomach, and, through a papilla or sphincter, squirts a mixture of bile and pancreatic juices onto the previous stomach contents. These juices neutralize the acidic chyme; the pancreatic alkali and bile acids form soap to emulsify and aid fat digestion; and the duodenum walls secrete additional fluids and enzymes to admix with the pancreatic enzymes to initiate the final upper digestive investment. The duodenal wall secretes blood hormones to excite the brain, and gallbladder and pancreas secretions, and, if overwhelmed, can inhibit the stomach from sending anything else down for a while, until they can catch all their collective breath.... duodenum

Genetic Engineering

Genetic engineering, or recombinant DNA technology, has only developed in the past decade or so; it is the process of changing the genetic material of a cell (see CELLS). GENES from one cell – for example, a human cell – can be inserted into another cell, usually a bacterium, and made to function. It is now possible to insert the gene responsible for the production of human INSULIN, human GROWTH HORMONE and INTERFERON from a human cell into a bacterium. Segments of DNA for insertion can be prepared by breaking long chains into smaller pieces by the use of restriction enzymes. The segments are then inserted into the affecting organism by using PLASMIDS and bacteriophages (see BACTERIOPHAGE). Plasmids are small packets of DNA that are found within bacteria and can be passed from one bacterium to another.

Already genetic engineering is contributing to easing the problems of diagnosis. DNA analysis and production of MONOCLONAL ANTIBODIES are other applications of genetic engineering. Genetic engineering has signi?cantly contributed to horticulture and agriculture with certain characteristics of one organism or variant of a species being transfected (a method of gene transfer) into another. This has given rise to higher-yield crops and to alteration in colouring and size in produce. Genetic engineering is also contributing to our knowledge of how human genes function, as these can be transfected into mice and other animals which can then act as models for genetic therapy. Studying the effects of inherited mutations derived from human DNA in these animal models is thus a very important and much faster way of learning about human disease.

Genetic engineering is a scienti?c procedure that could have profound implications for the human race. Manipulating heredity would be an unwelcome activity under the control of maverick scientists, politicians or others in positions of power.... genetic engineering

Mucus

The general name for the slimy secretion derived from mucous membranes. It is mainly composed of a substance called mucin, which varies according to the particular mucous membrane from which it is derived, and it contains other substances, such as cells cast o? from the surface of the membrane, enzymes, and dust particles. Mucin has the following characteristics: it is viscid, clear and tenacious; when dissolved in water it can be precipitated by addition of acetic acid; and when not in solution already, it is dissolved by weak alkalis, such as lime-water.

Under normal conditions the surface of a mucous membrane is lubricated by only a small quantity of mucus; the appearance of large quantities is a sign of in?ammation.... mucus

Ribozyme

Sections of deoxyribonucleic acid (DNA) – the principal molecule in a cell carrying genetic information – that act as enzymes (see ENZYME). The function of a ribozyme is to transform the messages encoded in DNA into proteins (see PROTEIN), using its property of catalysing chemical reactions in a cell. Most ribozymes act only on other pieces of ribonucleic acid (RNA), editing the messenger type that carries instructions to the parts of the cell that makes proteins. This editing ability is being used by scientists researching ways of correcting faulty GENES which can cause inherited disorders. The aim is to persuade the ribozyme to inhibit the messenger RNA to prevent production of the faulty gene. Ribozymes might also be used to disrupt infectious agents, such as viruses, which rely on RNA to invade body cells.... ribozyme

Intestine

The major part of the digestive tract (see digestive system), extending from the exit of the stomach to the anus. It forms a long tube divided into 2 main sections: the small and large intestines.

The small intestine is about 6.5 m in length and has 3 sections: the duodenum, the jejunum and the ileum. Partially digested food from the stomach is forced along the intestine by peristalsis.

The small intestine is concerned with the digestion and absorption of food. Digestive enzymes and bile are added to the partly digested food in the duodenum via the bile and pancreatic ducts (see biliary system). Glands within the walls of each section of the small intestine produce mucus and other enzymes, which help to break down the food. Blood vessels in the intestinal walls absorb nutrients and carry them to the liver for distribution to the rest of the body.

The large intestine is about 1.5 m long. The main section, the colon, is divided into an ascending, a transverse, a descending, and a pelvic portion (the sigmoid colon). The appendix hangs from a pouch (the caecum) between the small intestine and the colon. The final section before the anus is the rectum.Unabsorbed material leaves the small intestine as liquid and fibre.

As this material passes through the large intestine, water, vitamins, and mineral salts are absorbed into the bloodstream, leaving faeces made up of undigested food residue, fat, various secretions, and bacteria.

The faeces are compressed and pass into the rectum for evacuation.... intestine

Zinc

A trace element that is essential for normal growth, the development of the reproductive organs, normal functioning of the prostate gland, healing of wounds, and the manufacture of proteins and nucleic acids in the body. Zinc also controls the activities of more than 100 enzymes and is involved in the functioning of the hormone insulin.

Particularly rich sources of zinc include lean meat, wholemeal breads, whole grain cereals, dried beans, and seafood.

Zinc deficiency is rare. Most cases occur in people who are generally malnourished. Deficiency may also be caused by any disorder that causes malabsorption; acrodermatitis enteropathica; or by increased zinc requirements due to cell damage (for example, as a result of a burn or in sickle cell anaemia). Symptoms of deficiency include impairment of taste and loss of appetite; there may also be hair loss and inflammation of the skin, mouth, tongue, and eyelids. In children, zinc deficiency impairs growth and delays sexual development.

Prolonged excessive intake of zinc may interfere with the intestinal absorption of iron and copper, leading to a deficiency of these minerals.

Zinc compounds, such as zinc oxide, are included in many preparations for treating skin and scalp disorders.... zinc

Ají

Pepper, bell pepper, chili pepper, cayenne (Capsicum annuum, C. frutescens & C. chinense).

Plant Part Used: Leaf, fruit.

Dominican Medicinal Uses: The leaf is traditionally prepared as a warm poultice and applied topically for skin abscesses, boils or infections, or prepared as a tea and taken orally for menstrual cramps and related disorders. The fruit is typically used for culinary and nutritional purposes and is said to increase heat in the body.

Safety: No data on the safety of the leaf in humans (for internal or external use) has been identified in the available literature; however, in animal studies, topical application of the leaf did not show signs of toxicity or adverse effects. The fruit is widely consumed and considered safe in moderate amounts. Prolonged or excessive use may cause irritation of the mucosa or other adverse effects.

Contraindications: No data on the safety of this plant during pregnancy, lactation or in children has been identified in the available literature. The fruit should not be taken by patients with inflammatory gastro-intestinal or renal disorders. Avoid contact with the eyes or open wounds due to potential irritation of the mucosa.

Drug Interactions: Consumption of the fruit may inhibit liver microsomal enzymes and potentiate drugs metabolized by these enzymes. Aspirin and salicylic acid compounds: bioavailability may be reduced by concurrent use of peppers. Barbiturates: concomitant use of the dried fruit has been shown to potentiate the effects of hexobarbital. Anticoagulants, antiplatelet agents, thrombolytic agents: concomitant use of the fruit may increase the risk of bleeding.

Clinical Data: No human clinical trials of the leaf have been identified in the available literature. The fruit has been investigated in clinical trials for the following effects: analgesic, carotenoid bioavailability enhancement, gastroprotective, swallowing dysfunction treatment and urinary incontinence treatment.

Laboratory & Preclinical Data: The following biological activities of this plant have been investigated in laboratory and preclinical studies (in vitro or animal models): antimicrobial, antioxidant, antitumor, chemopreventive, cytotoxic, learning enhancement, learning impairment amelioration and renoprotective.

* See entry for Ají in “Part 3: Dominican Medicinal Plant Profiles” of this book for more information, including references.... ají

Albahaca

Basil (Ocimum basilicum).

Plant Part Used: Aerial parts: leaf, stem, flower.

Dominican Medicinal Uses: The aerial parts or leaves are traditionally prepared as a tea and taken orally for stomach ache, indigestion, gastro-intestinal pain, internal cleansing and women’s health conditions.

Safety: This herb is generally regarded as safe for human consumption in moderate amounts and widely used as a culinary seasoning.

Contraindications: The essential oil should not be used during pregnancy, lactation or in small children.

Drug Interactions: Synergistic effects may occur with drugs that share similar pharmacological activities as those described for this plant in the “Laboratory and Preclinical Data” section; metabolism of one of basil’s active constituents, estragole, may be hindered by concomitant use of medications metabolized by UGT2B7 or UGT1A9 phase II enzymes.

Clinical Data: No human clinical trials of this plant have been identified in the available literature.

Laboratory & Preclinical Data: The following biological activities of this plant have been investigated in laboratory and preclinical studies (in vitro or animal models): analgesic, antifungal, antimicrobial, antispasmodic, anti-ulcerogenic, gastric anti-ulcerogenic, glutathione S-transferase and smooth muscle relaxant.

* See entry for Albahaca in “Part 3: Dominican Medicinal Plant Profiles” of this book for more information, including references.... albahaca

Antimetabolites

A group of drugs used in the treatment of certain forms of malignant disease. Chemically, they closely resemble substances (or METABOLITES) which are essential for the life and growth of CELLS. Antimetabolites are incorporated into new nuclear material in the cell or combine irreversibly with essential cellular enzymes, thus disrupting normal cellular division (see MITOSIS and MEIOSIS) and causing death of the cell. There is now a range of antimetabolites including CYTARABINE, METHOTREXATE, FLUOROURACIL and MERCAPTOPURINE.... antimetabolites

Amazing Health Benefits Of Carrots

1. Beta carotene: Carrots are a rich source of this powerful antioxidant, which, among other vital uses, can be converted into vitamin A in the body to help maintain healthy skin. 2. Digestion: Carrots increase saliva and supply essential minerals, vitamins and enzymes that aid in digestion. Eating carrots regularly may help prevent gastric ulcers and other digestive disorders. 3. Alkaline elements: Carrots are rich in alkaline elements, which purify and revitalize the blood while balancing the acid/alkaline ratio of the body. 4. Potassium: Carrots are a good source of potassium, which can help maintain healthy sodium levels in the body, thereby helping to reduce elevated blood pressure levels. 5. Dental Health: Carrots kill harmful germs in the mouth and help prevent tooth decay. 6. Wounds: Raw or grated carrots can be used to help heal wounds, cuts and inflammation. 7. Phytonutrients: Among the many beneficial phytochemicals that carrots contain is a phytonutrient called falcarinol, which may reduce the risk of colon cancer and help promote overall colon health. 8. Carotenoids: Carrots are rich in carotenoids, which our bodies can use to help regulate blood sugar. 9. Fiber: Carrots are high in soluble fiber, which may reduce cholesterol by binding the LDL form (the kind we don’t want) and increasing the HDL form (the kind our body needs) to help reduce blood clots and prevent heart disease. 10. Eyes, hair, nails and more! The nutrients in carrots can improve the health of your eyes, skin, hair, nails and more through helping to detoxify your system and build new cells! 11. Improves vision There’s some truth in the old wisdom that carrots are good for your eyes. Carrots are rich in beta-carotene, which is converted into vitamin A in the liver. Vitamin A is transformed in the retina, to rhodopsin, a purple pigment necessary for night vision. Beta-carotene has also been shown to protect against macular degeneration and senile cataracts. A study found that people who eat large amounts of beta-carotene had a 40 percent lower risk of macular degeneration than those who consumed little. 12. Helps prevent cancer Studies have shown carrots reduce the risk of lung cancer, breast cancer and colon cancer. Falcarinol is a natural pesticide produced by the carrot that protects its roots from fungal diseases. Carrots are one of the only common sources of this compound. A study showed 1/3 lower cancer risk by carrot-eating rats. 13. Slows down aging The high level of beta-carotene in carrots acts as an antioxidant to cell damage done to the body through regular metabolism. It help slows down the aging of cells. 14. Promotes healthier skin Vitamin A and antioxidants protect the skin from sun damage. Deficiencies of vitamin A cause dryness to the skin, hair and nails. Vitamin A prevents premature wrinkling, acne, dry skin, pigmentation, blemishes and uneven skin tone. 15. Helps prevent infection Carrots are known by herbalists to prevent infection. They can be used on cuts—shredded raw or boiled and mashed. 16. Promotes healthier skin (from the outside) Carrots are used as an inexpensive and very convenient facial mask. Just mix grated carrot with a bit of honey. See the full recipe here: carrot face mask. 17. Prevents heart disease Studies show that diets high in carotenoids are associated with a lower risk of heart disease. Carrots have not only beta-carotene but also alpha-carotene and lutein. The regular consumption of carrots also reduces cholesterol levels because the soluble fibers in carrots bind with bile acids. 18. Cleanses the body Vitamin A assists the liver in flushing out the toxins from the body. It reduces the bile and fat in the liver. The fiber present in carrots helps clean out the colon and hasten waste movement. 19. Protects teeth and gums It’s all in the crunch! Carrots clean your teeth and mouth. They scrape off plaque and food particles just like toothbrushes or toothpaste. Carrots stimulate gums and trigger a lot of saliva, which, being alkaline, balances out the acid-forming, cavity-forming bacteria. The minerals in carrots prevent tooth damage. 20. Prevents stroke From all the above benefits it’s no surprise that in a Harvard University study, people who ate five or more carrots a week were less likely to suffer a stroke than those who ate only one carrot a month or less.... amazing health benefits of carrots

Avocados

Nutritional Profile Energy value (calories per serving): Moderate Protein: Low Fat: High Saturated fat: High Cholesterol: None Carbohydrates: Moderate Fiber: High to very high Sodium: Low Major vitamin contribution: Vitamins A, folate, vitamin C Major mineral contribution: Potassium

About the Nutrients in This Food The avocado is an unusual fruit because about 16 percent of its total weight is fat, primarily monounsaturated fatty acids. Like many other fruits, avo- cados are high in fiber (the Florida avocado is very high in fiber), a good source of the B vitamin folate, vitamin C, and potassium. The edible part of half of one average size avocado (100 g/3.5 ounces) provides 6.7 g dietary fiber, 15 g fat (2.1 g saturated fat, 9.7 g monoun- saturated fat, 1.8 g polyunsaturated fat), 81 mcg folate (20 percent of the R DA), 20 mg vitamin C (26 percent of the R DA for a woman, 22 percent for a man), and 485 mg potassium (the equivalent of one eight-ounce cup of fresh orange juice). The edible part of one-half a Florida avocado (a.k.a. alligator pear) has eight grams dietary fiber, 13.5 g fat (2.65 g saturated fat), 81 mcg folate (41 percent of the R DA for a man, 45 percent of the R DA for a woman), 12 mg vitamin C (20 percent of the R DA), and 741 mg potassium, 50 percent more than one cup fresh orange juice.

Diets That May Exclude or Restrict This Food Controlled-potassium diet Low-fat diet

Buying This Food Look for: Fruit that feels heavy for its size. The avocados most commonly sold in the U.S. are the Hass—a purple-black bumpy fruit that accounts for 85 percent of the avocados shipped from California—and the smooth-skinned Florida avocado (“alligator pear”). The oval, midwinter Bacon; the pear-shaped, late-fall Fuerte; the Gwen, a slightly larger Hass; Pinkerton, pear-shaped with a smaller seed; the round summer Reed; and the yellow-green, pear-shaped Zutano. Avoid: Avocados with soft dark spots on the skin that indicate damage underneath.

Storing This Food Store hard, unripened avocados in a warm place; a bowl on top of the refrigerator will do. Avocados are shipped before they ripen, when the flesh is hard enough to resist bruising in transit, but they ripen off the tree and will soften nicely at home. Store soft, ripe avocados in the refrigerator to slow the natural enzyme action that turns their flesh brown as they mature even when the fruit has not been cut.

Preparing This Food When you peel or slice an avocado, you tear its cell walls, releasing polyphenoloxidase, an enzyme that converts phenols in the avocado to brownish compounds that darken the avocado’s naturally pale green flesh. You can slow this reaction (but not stop it completely) by brushing the exposed surface of the avocado with an acid (lemon juice or vinegar). To store a cut avocado, brush it with lemon juice or vinegar, wrap it tightly in plastic, and keep it in the refrigerator—where it will eventually turn brown. Or you can store the avocado as guacamole; mixing it with lemon juice, tomatoes, onions, and mayonnaise (all of which are acidic) is an efficient way to protect the color of the fruit.

Medical Uses and/or Benefits Lower risk of some birth defects. As many as two of every 1,000 babies born in the United States each year may have cleft palate or a neural tube (spinal cord) defect due to their moth- ers’ not having gotten adequate amounts of folate during pregnancy. The current R DA for folate is 180 mcg for a healthy woman and 200 mcg for a healthy man, but the FDA now recommends 400 mcg for a woman who is or may become pregnant. Taking folate supple- ments before becoming pregnant and through the first two months of pregnancy reduces the risk of cleft palate; taking folate through the entire pregnancy reduces the risk of neural tube defects. Lower risk of heart attack. In the spring of 1998, an analysis of data from the records for more than 80,000 women enrolled in the long-running Nurses’ Health Study at Harvard School of Public Health/Brigham and Woman’s Hospital, in Boston, demonstrated that a diet providing more than 400 mcg folate and 3 mg vitamin B6 daily, from either food or supplements, more than twice the current R DA for each, may reduce a woman’s risk of heart attack by almost 50 percent. Although men were not included in the analysis, the results are assumed to apply to them as well. However, data from a meta-analysis published in the Journal of the American Medical Association in December 2006 called this theory into question. Researchers at Tulane Univer- sity examined the results of 12 controlled studies in which 16,958 patients with preexisting cardiovascular disease were given either folic acid supplements or placebos (“look-alike” pills with no folic acid) for at least six months. The scientists, who found no reduction in the risk of further heart disease or overall death rates among those taking folic acid, concluded that further studies will be required to ascertain whether taking folic acid supplements reduces the risk of cardiovascular disease. Lower levels of cholesterol. Avocados are rich in oleic acid, a monounsaturated fat believed to reduce cholesterol levels. Potassium benefits. Because potassium is excreted in urine, potassium-rich foods are often recommended for people taking diuretics. In addition, a diet rich in potassium (from food) is associated with a lower risk of stroke. A 1998 Harvard School of Public Health analysis of data from the long-running Health Professionals Study shows 38 percent fewer strokes among men who ate nine servings of high potassium foods a day vs. those who ate less than four servings. Among men with high blood pressure, taking a daily 1,000 mg potas- sium supplement—about the amount of potassium in one avocado—reduced the incidence of stroke by 60 percent.

Adverse Effects Associated with This Food Latex-fruit syndrome. Latex is a milky fluid obtained from the rubber tree and used to make medical and surgical products such as condoms and protective latex gloves, as well as rubber bands, balloons, and toys; elastic used in clothing; pacifiers and baby-bottle nipples; chewing gum; and various adhesives. Some of the proteins in latex are allergenic, known to cause reactions ranging from mild to potentially life-threatening. Some of the pro- teins found naturally in latex also occur naturally in foods from plants such as avocados, bananas, chestnuts, kiwi fruit, tomatoes, and food and diet sodas sweetened with aspar- tame. Persons sensitive to these foods are likely to be sensitive to latex as well. NOT E : The National Institute of Health Sciences, in Japan, also lists the following foods as suspect: A lmonds, apples, apricots, bamboo shoots, bell peppers, buckwheat, cantaloupe, carrots, celer y, cherries, chestnuts, coconut, figs, grapefruit, lettuce, loquat, mangoes, mushrooms, mustard, nectarines, oranges, passion fruit, papaya, peaches, peanuts, peppermint, pine- apples, potatoes, soybeans, strawberries, walnuts, and watermelon.

Food/Drug Interactions MAO inhibitors. Monoamine oxidase (M AO) inhibitors are drugs used as antidepressants or antihypertensives. They inhibit the action of enzymes that break down the amino acid tyramine so it can be eliminated from the body. Tyramine is a pressor amine, a chemical that constricts blood vessels and raises blood pressure. If you eat a food such as avocado that contains tyramine while you are taking an M AO inhibitor you cannot eliminate the pressor amine, and the result may be abnormally high blood pressure or a hypertensive crisis (sus- tained elevated blood pressure). False-positive test for tumors. Carcinoid tumors (which may arise from tissues in the endo- crine system, the intestines, or the lungs) secrete serotonin, a natural chemical that makes blood vessels expand or contract. Because serotonin is excreted in urine, these tumors are diagnosed by measuring the levels of serotonin by-products in the urine. Avocados contain large amounts of serotonin; eating them in the three days before a test for an endocrine tumor might produce a false-positive result, suggesting that you have the tumor when in fact you don’t. (Other foods high in serotonin are bananas, eggplant, pineapples, plums, tomatoes, and walnuts.)... avocados

Bananas

Nutritional Profile Energy value (calories per serving): Moderate Protein: Low Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Moderate Sodium: Low Major vitamin contribution: B vitamins, vitamin C Major mineral contribution: Potassium, magnesium

About the Nutrients in This Food A banana begins life with more starch than sugar, but as the fruit ripens its starches turn to sugar, which is why ripe bananas taste so much better than unripe ones.* The color of a banana’s skin is a fair guide to its starch/ sugar ratio. When the skin is yellow-green, 40 percent of its carbohydrates are starch; when the skin is fully yellow and the banana is ripe, only 8 per- cent of the carbohydrates are still starch. The rest (91 percent) have broken down into sugars—glucose, fructose, sucrose, the most plentiful sugar in the fruit. Its high sugar content makes the banana, in its self-contained packet, a handy energy source. Bananas are a high-fiber food with insoluble cellulose and lignin in the tiny seeds and soluble pectins in the flesh. They are also a good source of vitamin C and potassium. One small (six-inch) banana or a half-cup of sliced banana has 2.6 g dietary fiber and 8.8 mg vitamin C (12 percent of the R DA for a woman, 10 percent of the R DA for a man), plus 363 mg potassium.

The Most Nutritious Way to Serve This Food Fresh and ripe. Green bananas contain antinutrients, proteins that inhibit the actions of amylase, an enzyme that makes it possible for us to digest * They are also more healt hful. Green bananas contain proteins t hat inhibit amy- lase, an enzyme t hat makes it possible for us to digest complex carbohydrates. starch and other complex carbohydrates. Raw bananas are richer in potassium than cooked bananas; heating depletes potassium.

Buying This Food Look for: Bananas that will be good when you plan to eat them. Bananas with brown specks on the skin are ripe enough to eat immediately. Bananas with creamy yellow skin will be ready in a day or two. Bananas with mostly yellow skin and a touch of green at either end can be ripened at home and used in two or three days. Avoid: Overripe bananas whose skin has turned brown or split open. A grayish yellow skin means that the fruit has been damaged by cold storage. Bananas with soft spots under the skin may be rotten.

Storing This Food Store bananas that aren’t fully ripe at room temperature for a day or two. Like avocados, bananas are picked green, shipped hard to protect them from damage en route and then sprayed with ethylene gas to ripen them quickly. Untreated bananas release ethylene natu- rally to ripen the fruit and turn its starches to sugar, but natural ripening takes time. Artificial ripening happens so quickly that there is no time for the starches to turn into sugar. The bananas look ripe but they may taste bland and starchy. A few days at room temperature will give the starches a chance to change into sugars. Store ripe bananas in the refrigerator. The cold air will slow (but not stop) the natural enzyme action that ripens and eventually rots the fruit if you leave it at room temperature. Cold storage will darken the banana’s skin, since the chill damages cells in the peel and releases polyphenoloxidase, an enzyme that converts phenols in the banana peel to dark brown compounds, but the fruit inside will remain pale and tasty for several days.

Preparing This Food Do not slice or peel bananas until you are ready to use them. When you cut into the fruit, you tear its cell walls, releasing polyphenoloxidase, an enzyme that hastens the oxidation of phenols in the banana, producing brown pigments that darken the fruit. (Chilling a banana produces the same reaction because the cold damages cells in the banana peel.) You can slow the browning (but not stop it completely) by dipping raw sliced or peeled bananas into a solution of lemon juice or vinegar and water or by mixing the slices with citrus fruits in a fruit salad. Overripe, discolored bananas can be used in baking, where the color doesn’t matter and their intense sweetness is an asset.

What Happens When You Cook This Food When bananas are broiled or fried, they are cooked so quickly that there is very little change in color or texture. Even so, they will probably taste sweeter and have a more intense aroma than uncooked bananas. Heat liberates the volatile molecules that make the fruit taste and smell good.

How Other Kinds of Processing Affect This Food Drying. Drying removes water and concentrates the nutrients and calories in bananas. Bananas may be treated with compounds such as sulfur dioxide to inhibit polyphenoloxi- dase and keep the bananas from browning as they dry. People who are sensitive to sulfites may suffer severe allergic reactions, including anaphylactic shock, if they eat these treated bananas. Freezing. Fresh bananas freeze well but will brown if you try to thaw them at room tem- perature. To protect the creamy color, thaw frozen bananas in the refrigerator and use as quickly as possible.

Medical Uses and/or Benefits Lower risk of stroke. Various nutrition studies have attested to the power of adequate potassium to keep blood pressure within safe levels. For example, in the 1990s, data from the long-running Harvard School of Public Health/Health Professionals Follow-Up Study of male doctors showed that a diet rich in high-potassium foods such as bananas, oranges, and plantain may reduce the risk of stroke. In the study, the men who ate the higher number of potassium-rich foods (an average of nine servings a day) had a risk of stroke 38 percent lower than that of men who consumed fewer than four servings a day. In 2008, a similar survey at the Queen’s Medical Center (Honolulu) showed a similar protective effect among men and women using diuretic drugs (medicines that increase urination and thus the loss of potassium). Improved mood. Bananas and plantains are both rich in serotonin, dopamine, and other natural mood-elevating neurotransmitters—natural chemicals that facilitate the transmis- sion of impulses along nerve cells. Potassium benefits. Because potassium is excreted in urine, potassium-rich foods are often recommended for people taking diuretics. In addition, a diet rich in potassium (from food) is associated with a lower risk of stroke. A 1998 Harvard School of Public Health analysis of data from the long-running Health Professionals Study shows 38 percent fewer strokes among men who ate nine servings of high potassium foods a day vs. those who ate less than four servings. Among men with high blood pressure, taking a daily 1,000 mg potas- sium supplement—about the amount of potassium in one banana—reduced the incidence of stroke by 60 percent.

Adverse Effects Associated with This Food Digestive Problems. Unripe bananas contain proteins that inhibit the actions of amylase, an enzyme required to digest starch and other complex carbohydrates. Sulfite allergies. See How other kinds of processing affect this food. Latex-fruit syndrome. Latex is a milky fluid obtained from the rubber tree and used to make medical and surgical products such as condoms and protective latex gloves, as well as rub- ber bands, balloons, and toys; elastic used in clothing; pacifiers and baby bottle-nipples; chewing gum; and various adhesives. Some of the proteins in latex are allergenic, known to cause reactions ranging from mild to potentially life-threatening. Some of the proteins found naturally in latex also occur naturally in foods from plants such as avocados, bananas, chestnuts, kiwi fruit, tomatoes, and food and diet sodas sweetened with aspartame. Persons sensitive to these foods are likely to be sensitive to latex as well. NOTE : The National Insti- tute of Health Sciences, in Japan, also lists the following foods as suspect: Almonds, apples, apricots, bamboo shoots, bell peppers, buckwheat, cantaloupe, carrots, celery, cherries, chestnuts, coconut, figs, grapefruit, lettuce, loquat, mangoes, mushrooms, mustard, nectar- ines, oranges, passion fruit, papaya, peaches, peanuts, peppermint, pineapples, potatoes, soybeans, strawberries, walnuts, and watermelon.

Food/Drug Interactions Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyra- mine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. If you eat a food containing tyramine while you are taking an M AO inhibitor, you cannot effectively eliminate the tyramine from your body. The result may be a hypertensive crisis. There have been some reports in the past of such reactions in people who have eaten rotten bananas or bananas stewed with the peel. False-positive test for tumors. Carcinoid tumors—which may arise from tissues of the endo- crine system, the intestines, or the lungs—secrete serotonin, a natural chemical that makes blood vessels expand or contract. Because serotonin is excreted in urine, these tumors are diagnosed by measuring the levels of serotonin by-products in the urine. Bananas contain large amounts of serotonin; eating them in the three days before a test for an endocrine tumor might produce a false-positive result, suggesting that you have the tumor when in fact you don’t. (Other foods high in serotonin are avocados, eggplant, pineapple, plums, tomatoes, and walnuts.)... bananas

Beans

(Black beans, chickpeas, kidney beans, navy beans, white beans) See also Bean sprouts, Lentils, Lima beans, Peas, Soybeans.

Nutritional Profile Energy value (calories per serving): Moderate Protein: High Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Very high Sodium: Low Major vitamin contribution: Vitamin B6, folate Major mineral contribution: Iron, magnesium, zinc

About the Nutrients in This Food Beans are seeds, high in complex carbohydrates including starch and dietary fiber. They have indigestible sugars (stachyose and raffinose), plus insoluble cellulose and lignin in the seed covering and soluble gums and pectins in the bean. The proteins in beans are limited in the essential amino acids methionine and cystine.* All beans are a good source of the B vitamin folate, and iron. One-half cup canned kidney beans has 7.5 g dietary fiber, 65 mcg folate (15 percent of the R DA), and 1.6 mg iron (11 percent of the R DA for a woman, 20 percent of the R DA for a man). Raw beans contain antinutrient chemicals that inactivate enzymes required to digest proteins and carbohydrates. They also contain factors that inactivate vitamin A and also hemagglutinins, substances that make red blood cells clump together. Cooking beans disarms the enzyme inhibi- tors and the anti-vitamin A factors, but not the hemagglutinins. However, the amount of hemagglutinins in the beans is so small that it has no mea- surable effect in your body. * Soybeans are t he only beans t hat contain proteins considered “complete” because t hey contain sufficient amounts of all t he essent ial amino acids. The Folate Content of ½ Cup Cooked Dried Beans

  Bean   Folate (mcg)
Black beans 129
Chickpeas 191
Kidney beans canned 65
Navy beans 128
Pinto beans 147
  Source: USDA Nut rient Database: w w w.nal.usda.gov/fnic/cgibin /nut _search.pl, Nutritive Value of Foods, Home and Gardens Bullet in No. 72 (USDA, 1989).

The Most Nutritious Way to Serve This Food Cooked, to destroy antinutrients. With grains. The proteins in grains are deficient in the essential amino acids lysine and isoleucine but contain sufficient tryptophan, methionine, and cystine; the proteins in beans are exactly the opposite. Together, these foods provide “complete” proteins. With an iron-rich food (meat) or with a vitamin C-rich food (tomatoes). Both enhance your body’s ability to use the iron in the beans. The meat makes your stomach more acid (acid favors iron absorption); the vitamin C may convert the ferric iron in beans into ferrous iron, which is more easily absorbed by the body.

Diets That May Restrict or Exclude This Food Low-calcium diet Low-fiber diet Low-purine (antigout) diet

Buying This Food Look for: Smooth-skinned, uniformly sized, evenly colored beans that are free of stones and debris. The good news about beans sold in plastic bags is that the transparent material gives you a chance to see the beans inside; the bad news is that pyridoxine and pyridoxal, the natural forms of vitamin B6, are very sensitive to light. Avoid: Beans sold in bulk. Some B vitamins, such as vitamin B6 (pyridoxine and pyridoxal), are very sensitive to light. In addition, open bins allow insects into the beans, indicated by tiny holes showing where the bug has burrowed into or through the bean. If you choose to buy in bulk, be sure to check for smooth skinned, uniformly sized, evenly colored beans free of holes, stones, and other debris.

Storing This Food Store beans in air- and moistureproof containers in a cool, dark cabinet where they are pro- tected from heat, light, and insects.

Preparing This Food Wash dried beans and pick them over carefully, discarding damaged or withered beans and any that float. (Only withered beans are light enough to float in water.) Cover the beans with water, bring them to a boil, and then set them aside to soak. When you are ready to use the beans, discard the water in which beans have been soaked. Some of the indigestible sugars in the beans that cause intestinal gas when you eat the beans will leach out into the water, making the beans less “gassy.”

What Happens When You Cook This Food When beans are cooked in liquid, their cells absorb water, swell, and eventually rupture, releasing the pectins and gums and nutrients inside. In addition, cooking destroys antinutri- ents in beans, making them more nutritious and safe to eat.

How Other Kinds of Processing Affect This Food Canning. The heat of canning destroys some of the B vitamins in the beans. Vitamin B is water-soluble. You can recover all the lost B vitamins simply by using the liquid in the can, but the liquid also contains the indigestible sugars that cause intestinal gas when you eat beans. Preprocessing. Preprocessed dried beans have already been soaked. They take less time to cook but are lower in B vitamins.

Medical Uses and/or Benefits Lower risk of some birth defects. As many as two of every 1,000 babies born in the United States each year may have cleft palate or a neural tube (spinal cord) defect due to their moth- ers’ not having gotten adequate amounts of folate during pregnancy. The current R DA for folate is 180 mcg for a woman and 200 mcg for a man, but the FDA now recommends 400 mcg for a woman who is or may become pregnant. Taking a folate supplement before becoming pregnant and continuing through the first two months of pregnancy reduces the risk of cleft palate; taking folate through the entire pregnancy reduces the risk of neural tube defects. Lower risk of heart attack. In the spring of 1998, an analysis of data from the records for more than 80,000 women enrolled in the long-run ning Nurses Health Study at Har vard School of Public Health/ Brigham and Woman’s Hospital in Boston demonstrated that a diet providing more than 400 mcg folate and 3 mg vitamin B6 a day from either food or supple- ments, more than t wice the current R DA for each, may reduce a woman’s risk of heart attack by almost 50 percent. A lthough men were not included in the analysis, the results are assumed to apply to them as well. NOT E : Beans are high in B6 as well as folate. Fruit, green leaf y vegetables, whole grains, meat, fish, poultr y, and shellfish are good sources of vitamin B6. To reduce the levels of serum cholesterol. The gums and pectins in dried beans and peas appear to lower blood levels of cholesterol. Currently there are two theories to explain how this may happen. The first theory is that the pectins in the beans form a gel in your stomach that sops up fats and keeps them from being absorbed by your body. The second is that bacteria in the gut feed on the bean fiber, producing short-chain fatty acids that inhibit the production of cholesterol in your liver. As a source of carbohydrates for people with diabetes. Beans are digested very slowly, produc- ing only a gradual rise in blood-sugar levels. As a result, the body needs less insulin to control blood sugar after eating beans than after eating some other high-carbohydrate foods (such as bread or potato). In studies at the University of Kentucky, a bean, whole-grain, vegetable, and fruit-rich diet developed at the University of Toronto enabled patients with type 1 dia- betes (who do not produce any insulin themselves) to cut their daily insulin intake by 38 percent. Patients with type 2 diabetes (who can produce some insulin) were able to reduce their insulin injections by 98 percent. This diet is in line with the nutritional guidelines of the American Diabetes Association, but people with diabetes should always consult with their doctors and/or dietitians before altering their diet. As a diet aid. Although beans are high in calories, they are also high in bulk (fiber); even a small serving can make you feel full. And, because they are insulin-sparing, they delay the rise in insulin levels that makes us feel hungry again soon after eating. Research at the University of Toronto suggests the insulin-sparing effect may last for several hours after you eat the beans, perhaps until after the next meal.

Adverse Effects Associated with This Food Intestinal gas. All legumes (beans and peas) contain raffinose and stachyose, complex sug- ars that human beings cannot digest. The sugars sit in the gut and are fermented by intestinal bacteria which then produce gas that distends the intestines and makes us uncomfortable. You can lessen this effect by covering the beans with water, bringing them to a boil for three to five minutes, and then setting them aside to soak for four to six hours so that the indigestible sugars leach out in the soaking water, which can be discarded. Alternatively, you may soak the beans for four hours in nine cups of water for every cup of beans, discard the soaking water, and add new water as your recipe directs. Then cook the beans; drain them before serving. Production of uric acid. Purines are the natural metabolic by-products of protein metabo- lism in the body. They eventually break down into uric acid, sharp cr ystals that may concentrate in joints, a condition known as gout. If uric acid cr ystals collect in the urine, the result may be kidney stones. Eating dried beans, which are rich in proteins, may raise the concentration of purines in your body. Although controlling the amount of purines in the diet does not significantly affect the course of gout (which is treated with allopurinol, a drug that prevents the formation of uric acid cr ystals), limiting these foods is still part of many gout regimens.

Food/Drug Interactions Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyramine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. If you eat a food containing tyramine while you are taking an M AO inhibitor, you cannot effectively eliminate the tyramine from your body. The result may be a hypertensive crisis. Some nutrition guides list dried beans as a food to avoid while using M AO inhibitors.... beans

Beef

Nutritional Profile Energy value (calories per serving): Moderate Protein: High Fat: Moderate Saturated fat: High Cholesterol: Moderate Carbohydrates: None Fiber: None Sodium: Low Major vitamin contribution: B vitamins Major mineral contribution: Iron, phosphorus, zinc

About the Nutrients in This Food Like fish, pork, poultry, milk, and eggs, beef has high-quality proteins, with sufficient amounts of all the essential amino acids. Beef fat is slightly more highly saturated than pork fat, but less saturated than lamb fat. All have about the same amount of cholesterol per serving. Beef is an excellent source of B vitamins, including niacin, vitamin B6, and vitamin B12, which is found only in animal foods. Lean beef pro- vides heme iron, the organic iron that is about five times more useful to the body than nonheme iron, the inorganic form of iron found in plant foods. Beef is also an excellent source of zinc. One four-ounce serving of lean broiled sirloin steak has nine grams fat (3.5 g saturated fat), 101 mg cholesterol, 34 g protein, and 3.81 mg iron (21 percent of the R DA for a woman, 46 percent of the R DA for a man). One four-ounce serving of lean roast beef has 16 g fat (6.6 g saturated fat), 92 mg cholesterol, and 2.96 mg iron (16 percent of the R DA for a woman, 37 percent of the R DA for a man).

The Most Nutritious Way to Serve This Food With a food rich in vitamin C. Ascorbic acid increases the absorption of iron from meat. * These values apply to lean cooked beef.

Diets That May Restrict or Exclude This Food Controlled-fat, low-cholesterol diet Low-protein diet (for some forms of kidney disease)

Buying This Food Look for: Fresh, red beef. The fat should be white, not yellow. Choose lean cuts of beef with as little internal marbling (streaks of fat) as possible. The leanest cuts are flank steak and round steak; rib steaks, brisket, and chuck have the most fat. USDA grading, which is determined by the maturity of the animal and marbling in meat, is also a guide to fat content. U.S. prime has more marbling than U.S. choice, which has more marbling than U.S. good. All are equally nutritious; the difference is how tender they are, which depends on how much fat is present. Choose the cut of meat that is right for your recipe. Generally, the cuts from the cen- ter of the animal’s back—the rib, the T-Bone, the porterhouse steaks—are the most tender. They can be cooked by dry heat—broiling, roasting, pan-frying. Cuts from around the legs, the underbelly, and the neck—the shank, the brisket, the round—contain muscles used for movement. They must be tenderized by stewing or boiling, the long, moist cooking methods that break down the connective tissue that makes meat tough.

Storing This Food Refrigerate raw beef immediately, carefully wrapped to prevent its drippings from contami- nating other foods. Refrigeration prolongs the freshness of beef by slowing the natural multi- plication of bacteria on the meat surface. Unchecked, these bacteria will convert proteins and other substances on the surface of the meat to a slimy film and change meat’s sulfur-contain- ing amino acids methionine and cystine into smelly chemicals called mercaptans. When the mercaptans combine with myoglobin, they produce the greenish pigment that gives spoiled meat its characteristic unpleasant appearance. Fresh ground beef, with many surfaces where bacteria can live, should be used within 24 to 48 hours. Other cuts of beef may stay fresh in the refrigerator for three to five days.

Preparing This Food Trim the beef carefully. By judiciously cutting away all visible fat you can significantly reduce the amount of fat and cholesterol in each serving. When you are done, clean all utensils thoroughly with soap and hot water. Wash your cutting board, wood or plastic, with hot water, soap, and a bleach-and-water solution. For ultimate safety in preventing the transfer of microorganisms from the raw meat to other foods, keep one cutting board exclusively for raw meats, fish, and poultry, and a second one for everything else. Finally, don’t forget to wash your hands.

What Happens When You Cook This Food Cooking changes the appearance and flavor of beef, alters nutritional value, makes it safer, and extends its shelf life. Browning meat after you cook it does not “seal in the juices,” but it does change the fla- vor by caramelizing sugars on the surface. Because beef’s only sugars are the small amounts of glycogen in the muscles, we add sugars in marinades or basting liquids that may also con- tain acids (vinegar, lemon juice, wine) to break down muscle fibers and tenderize the meat. (Browning has one minor nutritional drawback. It breaks amino acids on the surface of the meat into smaller compounds that are no longer useful proteins.) When beef is cooked, it loses water and shrinks. Its pigments, which combine with oxygen, are denatured (broken into fragments) by the heat and turn brown, the natural color of well-done meat. At the same time, the fats in the beef are oxidized. Oxidized fats, whether formed in cooking or when the cooked meat is stored in the refrigerator, give cooked meat a character- istic warmed-over flavor. Cooking and storing meat under a blanket of antioxidants—catsup or a gravy made of tomatoes, peppers, and other vitamin C-rich vegetables—reduces the oxidation of fats and the intensity of warmed-over flavor. Meat reheated in a microwave oven also has less warmed-over flavor. An obvious nutritional benefit of cooking is the fact that heat lowers the fat content of beef by liquif ying the fat so it can run off the meat. One concrete example of how well this works comes from a comparison of the fat content in regular and extra-lean ground beef. According to research at the University of Missouri in 1985, both kinds of beef lose mass when cooked, but the lean beef loses water and the regular beef loses fat and cholesterol. Thus, while regular raw ground beef has about three times as much fat (by weight) as raw ground extra-lean beef, their fat varies by only 5 percent after broiling. To reduce the amount of fat in ground beef, heat the beef in a pan until it browns. Then put the beef in a colander, and pour one cup of warm water over the beef. Repeat with a second cup of warm water to rinse away fat melted by heating the beef. Use the ground beef in sauce and other dishes that do not require it to hold together. Finally, cooking makes beef safer by killing Salmonella and other organisms in the meat. As a result, cooking also serves as a natural preservative. According to the USDA, large pieces of fresh beef can be refrigerated for two or three days, then cooked and held safely for another day or two because the heat of cooking has reduced the number of bacteria on the surface of the meat and temporarily interrupted the natural cycle of deterioration.

How Other Kinds of Processing Affect This Food Aging. Hanging fresh meat exposed to the air, in a refrigerated room, reduces the moisture content and shrinks the meat slightly. As the meat ages enzymes break down muscle pro- teins, “tenderizing” the beef. Canning. Canned beef does not develop a warmed-over flavor because the high tempera- tures in canning food and the long cooking process alter proteins in the meat so that they act as antioxidants. Once the can is open, however, the meat should be protected from oxygen that will change the flavor of the beef. Curing. Salt-curing preserves meat through osmosis, the physical reaction in which liquids flow across a membrane, such as the wall of a cell, from a less dense to a more dense solution. The salt or sugar used in curing dissolves in the liquid on the surface of the meat to make a solution that is more dense than the liquid inside the cells of the meat. Water flows out of the meat and out of the cells of any microorganisms living on the meat, killing the microor- ganisms and protecting the meat from bacterial damage. Salt-cured meat is much higher in sodium than fresh meat. Freezing. When you freeze beef, the water inside its cells freezes into sharp ice crystals that can puncture cell membranes. When the beef thaws, moisture (and some of the B vitamins) will leak out through these torn cell walls. The loss of moisture is irreversible, but some of the vitamins can be saved by using the drippings when the meat is cooked. Freezing may also cause freezer burn—dry spots left when moisture evaporates from the surface of the meat. Waxed freezer paper is designed specifically to hold the moisture in meat; plastic wrap and aluminum foil are less effective. NOTE : Commercially prepared beef, which is frozen very quickly at very low temperatures, is less likely to show changes in texture. Irradiation. Irradiation makes meat safer by exposing it to gamma rays, the kind of high- energy ionizing radiation that kills living cells, including bacteria. Irradiation does not change the way meat looks, feels or tastes, or make the food radioactive, but it does alter the structure of some naturally occurring chemicals in beef, breaking molecules apart to form new com- pounds called radiolytic products (R P). About 90 percent of R Ps are also found in nonirradiated foods. The rest, called unique radiolytic products (UR P), are found only in irradiated foods. There is currently no evidence to suggest that UR Ps are harmful; irradiation is an approved technique in more than 37 countries around the world, including the United States. Smoking. Hanging cured or salted meat over an open fire slowly dries the meat, kills micro- organisms on its surface, and gives the meat a rich, “smoky” flavor that varies with the wood used in the fire. Meats smoked over an open fire are exposed to carcinogenic chemicals in the smoke, including a-benzopyrene. Meats treated with “artificial smoke flavoring” are not, since the flavoring is commercially treated to remove tar and a-benzopyrene.

Medical Uses and/or Benefits Treating and/or preventing iron deficiency. Without meat in the diet, it is virtually impossible for an adult woman to meet her iron requirement without supplements. One cooked 3.5- ounce hamburger provides about 2.9 mg iron, 16 percent of the R DA for an adult woman of childbearing age. Possible anti-diabetes activity. CLA may also prevent type 2 diabetes, also called adult-onset diabetes, a non-insulin-dependent form of the disease. At Purdue University, rats bred to develop diabetes spontaneously between eight and 10 weeks of age stayed healthy when given CLA supplements.

Adverse Effects Associated with This Food Increased risk of heart disease. Like other foods from animals, beef contains cholesterol and saturated fats that increase the amount of cholesterol circulating in your blood, raising your risk of heart disease. To reduce the risk of heart disease, the National Cholesterol Education Project recommends following the Step I and Step II diets. The Step I diet provides no more than 30 percent of total daily calories from fat, no more than 10 percent of total daily calories from saturated fat, and no more than 300 mg of cholesterol per day. It is designed for healthy people whose cholesterol is in the range of 200 –239 mg/dL. The Step II diet provides 25– 35 percent of total calories from fat, less than 7 percent of total calories from saturated fat, up to 10 percent of total calories from polyunsaturated fat, up to 20 percent of total calories from monounsaturated fat, and less than 300 mg cho- lesterol per day. This stricter regimen is designed for people who have one or more of the following conditions: •  Existing cardiovascular disease •  High levels of low-density lipoproteins (LDLs, or “bad” cholesterol) or low levels of high-density lipoproteins (HDLs, or “good” cholesterol) •  Obesity •  Type 1 diabetes (insulin-dependent diabetes, or diabetes mellitus) •  Metabolic syndrome, a.k.a. insulin resistance syndrome, a cluster of risk fac- tors that includes type 2 diabetes (non-insulin-dependent diabetes) Increased risk of some cancers. According the American Institute for Cancer Research, a diet high in red meat (beef, lamb, pork) increases the risk of developing colorectal cancer by 15 percent for every 1.5 ounces over 18 ounces consumed per week. In 2007, the National Can- cer Institute released data from a survey of 500,000 people, ages 50 to 71, who participated in an eight-year A AR P diet and health study identif ying a higher risk of developing cancer of the esophagus, liver, lung, and pancreas among people eating large amounts of red meats and processed meats. Food-borne illness. Improperly cooked meat contaminated with E. coli O157:H7 has been linked to a number of fatalities in several parts of the United States. In addition, meats con- taminated with other bacteria, viruses, or parasites pose special problems for people with a weakened immune system: the very young, the very old, cancer chemotherapy patients, and people with HIV. Cooking meat to an internal temperature of 140°F should destroy Salmo- nella and Campylobacter jejuni; 165°F, the E. coli organism; and 212°F, Listeria monocytogenes. Antibiotic sensitivity. Cattle in the United States are routinely given antibiotics to protect them from infection. By law, the antibiotic treatment must stop three days to several weeks before the animal is slaughtered. Theoretically, the beef should then be free of antibiotic residues, but some people who are sensitive to penicillin or tetracycline may have an allergic reaction to the meat, although this is rare. Antibiotic-resistant Salmonella and toxoplasmosis. Cattle treated with antibiotics may pro- duce meat contaminated with antibiotic-resistant strains of Salmonella, and all raw beef may harbor ordinary Salmonella as well as T. gondii, the parasite that causes toxoplasmosis. Toxoplasmosis is particularly hazardous for pregnant women. It can be passed on to the fetus and may trigger a series of birth defects including blindness and mental retardation. Both Salmonella and the T. gondii can be eliminated by cooking meat thoroughly and washing all utensils, cutting boards, and counters as well as your hands with hot soapy water before touching any other food. Decline in kidney function. Proteins are nitrogen compounds. When metabolized, they yield ammonia, which is excreted through the kidneys. In laborator y animals, a sustained high-protein diet increases the flow of blood through the kidneys, accelerating the natural age-related decline in kidney function. Some experts suggest that this may also occur in human beings.

Food/Drug Interactions Tetracycline antibiotics (demeclocycline [Declomycin], doxycycline [ Vibtamycin], methacycline [Rondomycin], minocycline [Minocin], oxytetracycline [Terramycin], tetracycline [Achromycin V, Panmycin, Sumycin]). Because meat contains iron, which binds tetracyclines into com- pounds the body cannot absorb, it is best to avoid meat for two hours before and after taking one of these antibiotics. Monoamine oxidase (MAO) inhibitors. Meat “tenderized” with papaya or a papain powder can interact with the class of antidepressant drugs known as monoamine oxidase inhibi- tors. Papain meat tenderizers work by breaking up the long chains of protein molecules. One by-product of this process is tyramine, a substance that constructs blood vessels and raises blood pressure. M AO inhibitors inactivate naturally occurring enzymes in your body that metabolize tyramine. If you eat a food such as papain-tenderized meat, which is high in tyramine, while you are taking a M AO inhibitor, you cannot effectively eliminate the tyramine from your body. The result may be a hypertensive crisis. Theophylline. Charcoal-broiled beef appears to reduce the effectiveness of theophylline because the aromatic chemicals produced by burning fat speed up the metabolism of the- ophylline in the liver.... beef

Beer

(Ale)

Nutritional Profile Energy value (calories per serving): Low Protein: Moderate Fat: None Saturated fat: None Cholesterol: None Carbohydrates: High Fiber: None Sodium: Low Major vitamin contribution: B vitamins Major mineral contribution: Phosphorus

About the Nutrients in This Food Beer and ale are fermented beverages created by yeasts that convert the sugars in malted barley and grain to ethyl alcohol (a.k.a. “alcohol,” “drink- ing alcohol”).* The USDA /Health and Human Services Dietary Guidelines for Americans defines one drink as 12 ounces of beer, five ounces of wine, or 1.25 ounces of distilled spirits. One 12-ounce glass of beer has 140 calo- ries, 86 of them (61 percent) from alcohol. But the beverage—sometimes nicknamed “liquid bread”—is more than empty calories. Like wine, beer retains small amounts of some nutrients present in the food from which it was made. * Because yeasts cannot digest t he starches in grains, t he grains to be used in mak ing beer and ale are allowed to germinate ( “malt” ). When it is t ime to make t he beer or ale, t he malted grain is soaked in water, forming a mash in which t he starches are split into simple sugars t hat can be digested (fermented) by t he yeasts. If undisturbed, t he fermentat ion will cont inue unt il all t he sugars have been digested, but it can be halted at any t ime simply by raising or lowering t he temperature of t he liquid. Beer sold in bott les or cans is pasteurized to k ill t he yeasts and stop t he fermentat ion. Draft beer is not pasteurized and must be refrigerated unt il tapped so t hat it will not cont inue to ferment in t he container. The longer t he shipping t ime, t he more likely it is t hat draft beer will be exposed to temperature variat ions t hat may affect its qualit y—which is why draft beer almost always tastes best when consumed near t he place where it was brewed. The Nutrients in Beer (12-ounce glass)

  Nutrients   Beer   %R DA
Calcium 17 mg 1.7
Magnesium 28.51 mg 7–9*
Phosphorus 41.1 mg 6
Potassium 85.7 mg (na)
Zinc 0.06 mg 0.5– 0.8*
Thiamin 0.02 mg 1.6 –1.8*
R iboflavin 0.09 mg 7– 8*
Niacin 1.55 mg 10
Vitamin B6 0.17 mg 13
Folate 20.57 mcg 5
  * t he first figure is t he %R DA for a man; t he second, for a woman Source: USDA Nut rient Database: w w w.nal.usda.gov/fnic/cgi-bin /nut _search.pl.

Diets That May Restrict or Exclude This Food Bland diet Gluten-free diet Low-purine (antigout) diet

Buying This Food Look for: A popular brand that sells steadily and will be fresh when you buy it. Avoid: Dusty or warm bottles and cans.

Storing This Food Store beer in a cool place. Beer tastes best when consumed within two months of the day it is made. Since you cannot be certain how long it took to ship the beer to the store or how long it has been sitting on the grocery shelves, buy only as much beer as you plan to use within a week or two. Protect bottled beer and open bottles or cans of beer from direct sunlight, which can change sulfur compounds in beer into isopentyl mercaptan, the smelly chemical that gives stale beer its characteristic unpleasant odor.

When You Are Ready to Serve This Food Serve beer only in absolutely clean glasses or mugs. Even the slightest bit of grease on the side of the glass will kill the foam immediately. Wash beer glasses with detergent, not soap, and let them drain dry rather than drying them with a towel that might carry grease from your hands to the glass. If you like a long-lasting head on your beer, serve the brew in tall, tapering glasses to let the foam spread out and stabilize. For full flavor, serve beer and ales cool but not ice-cold. Very low temperatures immo- bilize the molecules that give beer and ale their flavor and aroma.

What Happens When You Cook This Food When beer is heated (in a stew or as a basting liquid), the alcohol evaporates but the flavor- ing agents remain intact. Alcohol, an acid, reacts with metal ions from an aluminum or iron pot to form dark compounds that discolor the pot or the dish you are cooking in. To prevent this, prepare dishes made with beer in glass or enameled pots.

Medical Uses and/or Benefits Reduced risk of heart attack. Data from the American Cancer Society’s Cancer Prevention Study 1, a 12-year survey of more than 1 million Americans in 25 states, shows that men who take one drink a day have a 21 percent lower risk of heart attack and a 22 percent lower risk of stroke than men who do not drink at all. Women who have up to one drink a day also reduce their risk of heart attack. Numerous later studies have confirmed these findings. Lower risk of stroke. In January 1999, the results of a 677-person study published by researchers at New York Presbyterian Hospital-Columbia University showed that moder- ate alcohol consumption reduces the risk of stroke due to a blood clot in the brain among older people (average age: 70). How the alcohol prevents stroke is still unknown, but it is clear that moderate use of alcohol is a key. Heavy drinkers (those who consume more than seven drinks a day) have a higher risk of stroke. People who once drank heavily, but cut their consumption to moderate levels, can also reduce their risk of stroke. Numerous later studies have confirmed these findings. Lower cholesterol levels. Beverage alcohol decreases the body’s production and storage of low-density lipoproteins (LDLs), the protein and fat particles that carr y cholesterol into your arteries. As a result, people who drink moderately tend to have lower cholesterol levels and higher levels of high density lipoproteins (HDLs), the fat and protein particles that carr y cholesterol out of the body. The USDA /Health and Human Services Dietar y Guidelines for Americans defines moderation as two drinks a day for a man, one drink a day for a woman. Stimulating the appetite. Alcoholic beverages stimulate the production of saliva and the gastric acids that cause the stomach contractions we call hunger pangs. Moderate amounts of alcoholic beverages, which may help stimulate appetite, are often prescribed for geriatric patients, convalescents, and people who do not have ulcers or other chronic gastric problems that might be exacerbated by the alcohol. Dilation of blood vessels. Alcohol dilates the capillaries (the tiny blood vessels just under the skin), and moderate amounts of alcoholic beverages produce a pleasant flush that temporar- ily warms the drinker. But drinking is not an effective way to warm up in cold weather since the warm blood that flows up to the capillaries will cool down on the surface of your skin and make you even colder when it circulates back into the center of your body. Then an alco- hol flush will make you perspire, so that you lose more heat. Excessive amounts of beverage alcohol may depress the mechanism that regulates body temperature.

Adverse Effects Associated with This Food Increased risk of breast cancer. In 2008, scientists at the National Cancer Institute released data from a seven-year survey of more than 100,000 postmenopausal women showing that even moderate drinking (one to two drinks a day) may increase by 32 percent a woman’s risk of developing estrogen-receptor positive (ER+) and progesterone-receptor positive (PR+) breast cancer, tumors whose growth is stimulated by hormones. No such link was found between consuming alcohol and the risk of developing ER-/PR- tumors (not fueled by hor- mones). The finding applies to all types of alcohol: beer, wine, and spirits. Increased risk of oral cancer (cancer of the mouth and throat). Numerous studies confirm the American Cancer Society’s warning that men and women who consume more than two drinks a day are at higher risk of oral cancer than are nondrinkers or people who drink less. Note: The Dietary Guidelines for Americans describes one drink as 12 ounces of beer, five ounces of wine, or 1.5 ounces of distilled spirits. Increased risk of cancer of the colon and rectum. In the mid-1990s, studies at the University of Oklahoma suggested that men who drink more than five beers a day are at increased risk of rectal cancer. Later studies suggested that men and women who are heavy beer or spirits drinkers (but not those who are heavy wine drinkers) have a higher risk of colorectal cancers. Further studies are required to confirm these findings. Fetal alcohol syndrome. Fetal alcohol syndrome is a specific pattern of birth defects—low birth weight, heart defects, facial malformations, and mental retardation—first recognized in a study of babies born to alcoholic women who consumed more than six drinks a day while pregnant. Subsequent research has found a consistent pattern of milder defects in babies born to women who consume three to four drinks a day or five drinks on any one occasion while pregnant. To date, there is no evidence of a consistent pattern of birth defects in babies born to women who consume less than one drink a day while pregnant, but two studies at Columbia University have suggested that as few as two drinks a week while preg- nant may raise a woman’s risk of miscarriage. (“One drink” means 12 ounces of beer, five ounces of wine, or 1.25 ounces of distilled spirits.) Alcoholism. Alcoholism is an addiction disease, the inability to control one’s alcohol consumption. It is a potentially life-threatening condition, with a higher risk of death by accident, suicide, malnutrition, or acute alcohol poisoning, a toxic reaction that kills by para- lyzing body organs, including the heart. Malnutrition. While moderate alcohol consumption stimulates appetite, alcohol abuse depresses it. In addition, an alcoholic may drink instead of eating. When an alcoholic does eat, excess alcohol in his/her body prevents absorption of nutrients and reduces the ability to synthesize new tissue. Hangover. Alcohol is absorbed from the stomach and small intestine and carried by the bloodstream to the liver, where it is oxidized to acetaldehyde by alcohol dehydrogenase (ADH), the enzyme our bodies use to metabolize the alcohol we produce when we digest carbohydrates. The acetaldehyde is converted to acetyl coenzyme A and either eliminated from the body or used in the synthesis of cholesterol, fatty acids, and body tissues. Although individuals vary widely in their capacity to metabolize alcohol, on average, normal healthy adults can metabolize the alcohol in one quart of beer in approximately five to six hours. If they drink more than that, they will have more alcohol than the body’s natural supply of ADH can handle. The unmetabolized alcohol will pile up in the bloodstream, interfering with the liver’s metabolic functions. Since alcohol decreases the reabsorption of water from the kidneys and may inhibit the secretion of an antidiuretic hormone, they will begin to urinate copiously, losing magnesium, calcium, and zinc but retaining more irritating uric acid. The level of lactic acid in the body will increase, making them feel tired and out of sorts; their acid-base balance will be out of kilter; the blood vessels in their heads will swell and throb; and their stomachs, with linings irritated by the alcohol, will ache. The ultimate result is a “hangover” whose symptoms will disappear only when enough time has passed to allow their bodies to marshal the ADH needed to metabolize the extra alcohol in their blood. Changes in body temperature. Alcohol dilates capillaries, tiny blood vessels just under the skin, producing a “flush” that temporarily warms the drinker. But drinking is not an effective way to stay warm in cold weather. Warm blood flowing up from the body core to the surface capillaries is quickly chilled, making you even colder when it circulates back into your organs. In addition, an alcohol flush triggers perspiration, further cooling your skin. Finally, very large amounts of alcohol may actually depress the mechanism that regulates body temperature. Impotence. Excessive drinking decreases libido (sexual desire) and interferes with the ability to achieve or sustain an erection. “Beer belly.” Data from a 1995, 12,000 person study at the University of North Carolina in Chapel Hill show that people who consume at least six beers a week have more rounded abdomens than people who do not drink beer. The question left to be answered is which came first: the tummy or the drinking.

Food/Drug Interactions Acetaminophen (Tylenol, etc.). The FDA recommends that people who regularly have three or more drinks a day consult a doctor before using acetaminophen. The alcohol/acetamino- phen combination may cause liver failure. Disulfiram (Antabuse). Taken with alcohol, disulfiram causes flushing, nausea, low blood pressure, faintness, respiratory problems, and confusion. The severity of the reaction gener- ally depends on how much alcohol you drink, how much disulfiram is in your body, and how long ago you took it. Disulfiram is used to help recovering alcoholics avoid alcohol. (If taken with alcohol, metronidazole [Flagyl], procarbazine [Matulane], quinacrine [Atabrine], chlorpropamide (Diabinase), and some species of mushrooms may produce a mild disulfi- ramlike reaction.) Anticoagulants. Alcohol slows the body’s metabolism of anticoagulants (blood thinners) such as warfarin (Coumadin), intensif ying the effect of the drugs and increasing the risk of side effects such as spontaneous nosebleeds. Antidepressants. Alcohol may increase the sedative effects of antidepressants. Drinking alcohol while you are taking a monoamine oxidase (M AO) inhibitor is especially hazard- ous. M AO inhibitors inactivate naturally occurring enzymes in your body that metabolize tyramine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. If you eat a food containing tyramine while you are taking an M AO inhibitor, you cannot effectively eliminate the tyramine from your body. The result may be a hypertensive crisis. Ordinarily, fermentation of beer and ale does not produce tyramine, but some patients have reported tyramine reactions after drinking some imported beers. Beer and ale are usually prohibited to those using M AO inhibitors. Aspirin, ibuprofen, ketoprofen, naproxen, and nonsteroidal anti-inflammatory drugs. Like alcohol, these analgesics irritate the lining of the stomach and may cause gastric bleeding. Combining the two intensifies the effect. Insulin and oral hypoglycemics. Alcohol lowers blood sugar and interferes with the metabo- lism of oral antidiabetics; the combination may cause severe hypoglycemia. Sedatives and other central nervous system depressants (tranquilizers, sleeping pills, antidepres- sants, sinus and cold remedies, analgesics, and medication for motion sickness). Alcohol inten- sifies sedation and, depending on the dose, may cause drowsiness, respiratory depression, coma, or death.... beer

Bone, Disorders Of

Bone is not an inert sca?olding for the human body. It is a living, dynamic organ, being continuously remodelled in response to external mechanical and chemical in?uences and acting as a large reservoir for calcium and phosphate. It is as susceptible to disease as any other organ, but responds in a way rather di?erent from the rest of the body.

Bone fractures These occur when there is a break in the continuity of the bone. This happens either as a result of violence or because the bone is unhealthy and unable to withstand normal stresses.

SIMPLE FRACTURES Fractures where the skin remains intact or merely grazed. COMPOUND FRACTURES have at least one wound which is in communication with the fracture, meaning that bacteria can enter the fracture site and cause infection. A compound fracture is also more serious than a simple fracture because there is greater potential for blood loss. Compound fractures usually need hospital admission, antibiotics and careful reduction of the fracture. Debridement (cleaning and excising dead tissue) in a sterile theatre may also be necessary.

The type of fracture depends on the force which has caused it. Direct violence occurs when an object hits the bone, often causing a transverse break – which means the break runs horizontally across the bone. Indirect violence occurs when a twisting injury to the ankle, for example, breaks the calf-bone (the tibia) higher up. The break may be more oblique. A fall on the outstretched hand may cause a break at the wrist, in the humerus or at the collar-bone depending on the force of impact and age of the person. FATIGUE FRACTURES These occur after the bone has been under recurrent stress. A typical example is the march fracture of the second toe, from which army recruits suffer after long marches. PATHOLOGICAL FRACTURES These occur in bone which is already diseased – for example, by osteoporosis (see below) in post-menopausal women. Such fractures are typically crush fractures of the vertebrae, fractures of the neck of the femur, and COLLES’ FRACTURE (of the wrist). Pathological fractures also occur in bone which has secondary-tumour deposits. GREENSTICK FRACTURES These occur in young children whose bones are soft and bend, rather than break, in response to stress. The bone tends to buckle on the side opposite to the force. Greenstick fractures heal quickly but still need any deformity corrected and plaster of Paris to maintain the correction. COMPLICATED FRACTURES These involve damage to important soft tissue such as nerves, blood vessels or internal organs. In these cases the soft-tissue damage needs as much attention as the fracture site. COMMINUTED FRACTURES A fracture with more than two fragments. It usually means that the injury was more violent and that there is more risk of damage to vessels and nerves. These fractures are unstable and take longer to unite. Rehabilitation tends to be protracted. DEPRESSED FRACTURES Most commonly found in skull fractures. A fragment of bone is forced inwards so that it lies lower than the level of the bone surrounding it. It may damage the brain beneath it.

HAIR-LINE FRACTURES These occur when the bone is broken but the force has not been severe enough to cause visible displacement. These fractures may be easily missed. Symptoms and signs The fracture site is usually painful, swollen and deformed. There is asymmetry of contour between limbs. The limb is held uselessly. If the fracture is in the upper

limb, the arm is usually supported by the patient; if it is in the lower limb then the patient is not able to bear weight on it. The limb may appear short because of muscle spasm.

Examination may reveal crepitus – a bony grating – at the fracture site. The diagnosis is con?rmed by radiography.

Treatment Healing of fractures (union) begins with the bruise around the fracture being resorbed and new bone-producing cells and blood vessels migrating into the area. Within a couple of days they form a bridge of primitive bone across the fracture. This is called callus.

The callus is replaced by woven bone which gradually matures as the new bone remodels itself. Treatment of fractures is designed to ensure that this process occurs with minimal residual deformity to the bone involved.

Treatment is initially to relieve pain and may involve temporary splinting of the fracture site. Reducing the fracture means restoring the bones to their normal position; this is particularly important at the site of joints where any small displacement may limit movement considerably.

with plaster of Paris. If closed traction does not work, then open reduction of the fracture may

be needed. This may involve ?xing the fracture with internal-?xation methods, using metal plates, wires or screws to hold the fracture site in a rigid position with the two ends closely opposed. This allows early mobilisation after fractures and speeds return to normal use.

External ?xators are usually metal devices applied to the outside of the limb to support the fracture site. They are useful in compound fractures where internal ?xators are at risk of becoming infected.

Consolidation of a fracture means that repair is complete. The time taken for this depends on the age of the patient, the bone and the type of fracture. A wrist fracture may take six weeks, a femoral fracture three to six months in an adult.

Complications of fractures are fairly common. In non-union, the fracture does not unite

– usually because there has been too much mobility around the fracture site. Treatment may involve internal ?xation (see above). Malunion means that the bone has healed with a persistent deformity and the adjacent joint may then develop early osteoarthritis.

Myositis ossi?cans may occur at the elbow after a fracture. A big mass of calci?ed material develops around the fracture site which restricts elbow movements. Late surgical removal (after 6–12 months) is recommended.

Fractured neck of FEMUR typically affects elderly women after a trivial injury. The bone is usually osteoporotic. The leg appears short and is rotated outwards. Usually the patient is unable to put any weight on the affected leg and is in extreme pain. The fractures are classi?ed according to where they occur:

subcapital where the neck joins the head of the femur.

intertrochanteric through the trochanter.

subtrochanteric transversely through the upper end of the femur (rare). Most of these fractures of the neck of femur

need ?xing by metal plates or hip replacements, as immobility in this age group has a mortality of nearly 100 per cent. Fractures of the femur shaft are usually the result of severe trauma such as a road accident. Treatment may be conservative or operative.

In fractures of the SPINAL COLUMN, mere damage to the bone – as in the case of the so-called compression fracture, in which there is no damage to the spinal cord – is not necessarily serious. If, however, the spinal cord is damaged, as in the so-called fracture dislocation, the accident may be a very serious one, the usual result being paralysis of the parts of the body below the level of the injury. Therefore the higher up the spine is fractured, the more serious the consequences. The injured person should not be moved until skilled assistance is at hand; or, if he or she must be removed, this should be done on a rigid shutter or door, not on a canvas stretcher or rug, and there should be no lifting which necessitates bending of the back. In such an injury an operation designed to remove a displaced piece of bone and free the spinal cord from pressure is often necessary and successful in relieving the paralysis. DISLOCATIONS or SUBLUXATION of the spine are not uncommon in certain sports, particularly rugby. Anyone who has had such an injury in the cervical spine (i.e. in the neck) should be strongly advised not to return to any form of body-contact or vehicular sport.

Simple ?ssured fractures and depressed fractures of the skull often follow blows or falls on the head, and may not be serious, though there is always a risk of damage which is potentially serious to the brain at the same time.

Compound fractures may result in infection within the skull, and if the skull is extensively broken and depressed, surgery is usually required to check any intercranial bleeding or to relieve pressure on the brain.

The lower jaw is often fractured by a blow on the face. There is generally bleeding from the mouth, the gum being torn. Also there are pain and grating sensations on chewing, and unevenness in the line of the teeth. The treatment is simple, the line of teeth in the upper jaw forming a splint against which the lower jaw is bound, with the mouth closed.

Congenital diseases These are rare but may produce certain types of dwar?sm or a susceptibility to fractures (osteogenesis imperfecta).

Infection of bone (osteomyelitis) may occur after an open fracture, or in newborn babies with SEPTICAEMIA. Once established it is very di?cult to eradicate. The bacteria appear capable of lying dormant in the bone and are not easily destroyed with antibiotics so that prolonged treatment is required, as might be surgical drainage, exploration or removal of dead bone. The infection may become chronic or recur.

Osteomalacia (rickets) is the loss of mineralisation of the bone rather than simple loss of bone mass. It is caused by vitamin D de?ciency and is probably the most important bone disease in the developing world. In sunlight the skin can synthesise vitamin D (see APPENDIX 5: VITAMINS), but normally rickets is caused by a poor diet, or by a failure to absorb food normally (malabsorbtion). In rare cases vitamin D cannot be converted to its active state due to the congenital lack of the speci?c enzymes and the rickets will fail to respond to treatment with vitamin D. Malfunction of the parathyroid gland or of the kidneys can disturb the dynamic equilibrium of calcium and phosphate in the body and severely deplete the bone of its stores of both calcium and phosphate.

Osteoporosis A metabolic bone disease resulting from low bone mass (osteopenia) due to excessive bone resorption. Su?erers are prone to bone fractures from relatively minor trauma. With bone densitometry it is now possible to determine individuals’ risk of osteoporosis and monitor their response to treatment.

By the age of 90 one in two women and one in six men are likely to sustain an osteoporosis-related fracture. The incidence of fractures is increasing more than would be expected from the ageing of the population, which may re?ect changing patterns of exercise or diet.

Osteoporosis may be classi?ed as primary or secondary. Primary consists of type 1 osteoporosis, due to accelerated trabecular bone loss, probably as a result of OESTROGENS de?ciency. This typically leads to crush fractures of vertebral bodies and fractures of the distal forearm in women in their 60s and 70s. Type 2 osteoporosis, by contrast, results from the slower age-related cortical and travecular bone loss that occurs in both sexes. It typically leads to fractures of the proximal femur in elderly people.

Secondary osteoporosis accounts for about 20 per cent of cases in women and 40 per cent of cases in men. Subgroups include endocrine (thyrotoxicosis – see under THYROID GLAND, DISEASES OF, primary HYPERPARATHYROIDISM, CUSHING’S SYNDROME and HYPOGONADISM); gastrointestinal (malabsorption syndrome, e.g. COELIAC DISEASE, or liver disease, e.g. primary biliary CIRRHOSIS); rheumatological (RHEUMATOID ARTHRITIS or ANKYLOSING SPONDYLITIS); malignancy (multiple MYELOMA or metastatic CARCINOMA); and drugs (CORTICOSTEROIDS, HEPARIN). Additional risk factors for osteoporosis include smoking, high alcohol intake, physical inactivity, thin body-type and heredity.

Individuals at risk of osteopenia, or with an osteoporosis-related fracture, need investigation with spinal radiography and bone densitometry. A small fall in bone density results in a large increase in the risk of fracture, which has important implications for preventing and treating osteoporosis.

Treatment Antiresorptive drugs: hormone replacement therapy – also valuable in treating menopausal symptoms; treatment for at least ?ve years is necessary, and prolonged use may increase risk of breast cancer. Cyclical oral administration of disodium etidronate – one of the bisphosphonate group of drugs – with calcium carbonate is also used (poor absorption means the etidronate must be taken on an empty stomach). Calcitonin – currently available as a subcutaneous injection; a nasal preparation with better tolerance is being developed. Calcium (1,000 mg daily) seems useful in older patients, although probably ine?ective in perimenopausal women, and it is a safe preparation. Vitamin D and calcium – recent evidence suggests value for elderly patients. Anabolic steroids, though androgenic side-effects (masculinisation) make these unacceptable for most women.

With established osteoporosis, the aim of treatment is to relieve pain (with analgesics and physical measures, e.g. lumbar support) and reduce the risk of further fractures: improvement of bone mass, the prevention of falls, and general physiotherapy, encouraging a healthier lifestyle with more daily exercise.

Further information is available from the National Osteoporosis Society.

Paget’s disease (see also separate entry) is a common disease of bone in the elderly, caused by overactivity of the osteoclasts (cells concerned with removal of old bone, before new bone is laid down by osteoblasts). The bone affected thickens and bows and may become painful. Treatment with calcitonin and bisphosphonates may slow down the osteoclasts, and so hinder the course of the disease, but there is no cure.

If bone loses its blood supply (avascular necrosis) it eventually fractures or collapses. If the blood supply does not return, bone’s normal capacity for healing is severely impaired.

For the following diseases see separate articles: RICKETS; ACROMEGALY; OSTEOMALACIA; OSTEOGENESIS IMPERFECTA.

Tumours of bone These can be benign (non-cancerous) or malignant (cancerous). Primary bone tumours are rare, but secondaries from carcinoma of the breast, prostate and kidneys are relatively common. They may form cavities in a bone, weakening it until it breaks under normal load (a pathological fracture). The bone eroded away by the tumour may also cause problems by causing high levels of calcium in the plasma.

EWING’S TUMOUR is a malignant growth affecting long bones, particularly the tibia (calfbone). The presenting symptoms are a throbbing pain in the limb and a high temperature. Treatment is combined surgery, radiotherapy and chemotherapy.

MYELOMA is a generalised malignant disease of blood cells which produces tumours in bones which have red bone marrow, such as the skull and trunk bones. These tumours can cause pathological fractures.

OSTEOID OSTEOMA is a harmless small growth which can occur in any bone. Its pain is typically removed by aspirin.

OSTEOSARCOMA is a malignant tumour of bone with a peak incidence between the ages of ten and 20. It typically involves the knees, causing a warm tender swelling. Removal of the growth with bone conservation techniques can often replace amputation as the de?nitive treatment. Chemotherapy can improve long-term survival.... bone, disorders of

Broccoli

Nutritional Profile Energy value (calories per serving): Low Protein: High Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: Moderate Fiber: Very high Sodium: Low Major vitamin contribution: Vitamin A, folate, vitamin C Major mineral contribution: Calcium

About the Nutrients in This Food Broccoli is very high-fiber food, an excellent source of vitamin A, the B vitamin folate, and vitamin C. It also has some vitamin E and vitamin K, the blood-clotting vitamin manufactured primarily by bacteria living in our intestinal tract. One cooked, fresh broccoli spear has five grams of dietary fiber, 2,500 IU vitamin A (108 percent of the R DA for a woman, 85 percent of the R DA for a man), 90 mcg folate (23 percent of the R DA), and 130 mg vitamin C (178 percent of the R DA for a woman, 149 percent of the R DA for a man).

The Most Nutritious Way to Serve This Food Raw. Studies at the USDA Agricultural Research Center in Beltsville, Maryland, show that raw broccoli has up to 40 percent more vitamin C than broccoli that has been cooked or frozen.

Diets That May Restrict or Exclude This Food Antiflatulence diet Low-fiber diet

Buying This Food Look for: Broccoli with tightly closed buds. The stalk, leaves, and florets should be fresh, firm, and brightly colored. Broccoli is usually green; some varieties are tinged with purple. Avoid: Broccoli with woody stalk or florets that are open or turning yellow. When the green chlorophyll pigments fade enough to let the yellow carotenoids underneath show through, the buds are about to bloom and the broccoli is past its prime.

Storing This Food Pack broccoli in a plastic bag and store it in the refrigerator or in the vegetable crisper to protect its vitamin C. At 32°F, fresh broccoli can hold onto its vitamin C for as long as two weeks. Keep broccoli out of the light; like heat, light destroys vitamin C.

Preparing This Food First, rinse the broccoli under cool running water to wash off any dirt and debris clinging to the florets. Then put the broccoli, florets down, into a pan of salt water (1 tsp. salt to 1 qt. water) and soak for 15 to 30 minutes to drive out insects hiding in the florets. Then cut off the leaves and trim away woody section of stalks. For fast cooking, divide the broccoli up into small florets and cut the stalk into thin slices.

What Happens When You Cook This Food The broccoli stem contains a lot of cellulose and will stay firm for a long time even through the most vigorous cooking, but the cell walls of the florets are not so strongly fortified and will soften, eventually turning to mush if you cook the broccoli long enough. Like other cruciferous vegetables, broccoli contains mustard oils (isothiocyanates), natural chemicals that break down into a variety of smelly sulfur compounds (including hydrogen sulfide and ammonia) when the broccoli is heated. The reaction is more intense in aluminum pots. The longer you cook broccoli, the more smelly compounds there will be, although broccoli will never be as odorous as cabbage or cauliflower. Keeping a lid on the pot will stop the smelly molecules from floating off into the air but will also accelerate the chemical reaction that turns green broccoli olive-drab. Chlorophyll, the pigment that makes green vegetables green, is sensitive to acids. When you heat broccoli, the chlorophyll in its florets and stalk reacts chemically with acids in the broccoli or in the cooking water to form pheophytin, which is brown. The pheophytin turns cooked broccoli olive-drab or (since broccoli contains some yellow carotenes) bronze. To keep broccoli green, you must reduce the interaction between the chlorophyll and the acids. One way to do this is to cook the broccoli in a large quantity of water, so the acids will be diluted, but this increases the loss of vitamin C.* Another alternative is to leave the lid off the pot so that the hydrogen atoms can float off into the air, but this allows the smelly sulfur compounds to escape, too. The best way is probably to steam the broccoli quickly with very little water, so it holds onto its vitamin C and cooks before there is time for reac- tion between chlorophyll and hydrogen atoms to occur.

How Other Kinds of Processing Affect This Food Freezing. Frozen broccoli usually contains less vitamin C than fresh broccoli. The vitamin is lost when the broccoli is blanched to inactivate catalase and peroxidase, enzymes that would otherwise continue to ripen the broccoli in the freezer. On the other hand, according to researchers at Cornell University, blanching broccoli in a microwave oven—two cups of broccoli in three tablespoons of water for three minutes at 600 –700 watts—nearly doubles the amount of vitamin C retained. In experiments at Cornell, frozen broccoli blanched in a microwave kept 90 percent of its vitamin C, compared to 56 percent for broccoli blanched in a pot of boiling water on top of a stove.

Medical Uses and/or Benefits Protection against some cancers. Naturally occurring chemicals (indoles, isothiocyanates, glucosinolates, dithiolethiones, and phenols) in Brussels sprouts, broccoli, cabbage, cauli- flower, and other cruciferous vegetables appear to reduce the risk of some forms of cancer, perhaps by preventing the formation of carcinogens in your body or by blocking cancer- causing substances from reaching or reacting with sensitive body tissues or by inhibiting the transformation of healthy cells to malignant ones. All cruciferous vegetables contain sulforaphane, a member of a family of chemicals known as isothiocyanates. In experiments with laboratory rats, sulforaphane appears to increase the body’s production of phase-2 enzymes, naturally occurring substances that inacti- vate and help eliminate carcinogens. At the Johns Hopkins University in Baltimore, Maryland, 69 percent of the rats injected with a chemical known to cause mammary cancer developed tumors vs. only 26 percent of the rats given the carcinogenic chemical plus sulforaphane. To get a protective amount of sulforaphane from broccoli you would have to eat about two pounds a week. But in 1997, Johns Hopkins researchers discovered that broccoli seeds and three-day-old broccoli sprouts contain a compound converted to sulforaphane when the seed and sprout cells are crushed. Five grams of three-day-old sprouts contain as much sulphoraphane as 150 grams of mature broccoli. * Broccoli will lose large amounts of vitamin C if you cook it in water t hat is cold when you start. As it boils, water releases ox ygen t hat would ot her wise dest roy vitamin C, so you can cut t he vitamin loss dramat ically simply by lett ing t he water boil for 60 seconds before adding t he broccoli. Vision protection. In 2004, the Johns Hopkins researchers updated their findings on sulfora- phane to suggest that it may also protect cells in the eyes from damage due to ultraviolet light, thus reducing the risk of macular degeneration, the most common cause of age-related vision loss. Lower risk of some birth defects. Up to two or every 1,000 babies born in the United States each year may have cleft palate or a neural tube (spinal cord) defect due to their mothers’ not having gotten adequate amounts of folate during pregnancy. The current R DA for folate is 180 mcg for a woman, 200 mcg for a man, but the FDA now recommends 400 mcg for a woman who is or may become pregnant. Taking a folate supplement before becoming pregnant and continuing through the first two months of pregnancy reduces the risk of cleft palate; taking folate through the entire pregnancy reduces the risk of neural tube defects. Broccoli is a good source of folate. One raw broccoli spear has 107 mcg folate, more than 50 percent of the R DA for an adult. Possible lower risk of heart attack. In the spring of 1998, an analysis of data from the records for more than 80,000 women enrolled in the long-running Nurses’ Health Study at Harvard School of Public Health/Brigham and Women’s Hospital, in Boston, demonstrated that a diet providing more than 400 mcg folate and 3 mg vitamin B6 daily, either from food or supple- ments, might reduce a woman’s risk of heart attack by almost 50 percent. Although men were not included in the study, the results were assumed to apply to them as well. However, data from a meta-analysis published in the Journal of the American Medical Association in December 2006 called this theory into question. Researchers at Tulane Univer- sity examined the results of 12 controlled studies in which 16,958 patients with preexisting cardiovascular disease were given either folic acid supplements or placebos (“look-alike” pills with no folic acid) for at least six months. The scientists, who found no reduction in the risk of further heart disease or overall death rates among those taking folic acid, concluded that further studies will be required to ascertain whether taking folic acid supplements reduces the risk of cardiovascular disease. Possible inhibition of the herpes virus. Indoles, another group of chemicals in broccoli, may inhibit the growth of some herpes viruses. In 2003, at the 43rd annual Interscience Confer- ence on Antimicrobial Agents and Chemotherapy, in Chicago, researchers from Stockholm’s Huddinge University Hospital, the University of Virginia, and Northeastern Ohio University reported that indole-3-carbinol (I3C) in broccoli stops cells, including those of the herpes sim- plex virus, from reproducing. In tests on monkey and human cells, I3C was nearly 100 percent effective in blocking reproduction of the HSV-1 (oral and genital herpes) and HSV-2 (genital herpes), including one strain known to be resistant to the antiviral drug acyclovir (Zovirax).

Adverse Effects Associated with This Food Enlarged thyroid gland. Cruciferous vegetables, including broccoli, contain goitrin, thio- cyanate, and isothiocyanate, chemical compounds that inhibit the formation of thyroid hormones and cause the thyroid to enlarge in an attempt to produce more. These chemicals, known collectively as goitrogens, are not hazardous for healthy people who eat moderate amounts of cruciferous vegetables, but they may pose problems for people who have thyroid problems or are taking thyroid medication. False-positive test for occult blood in the stool. The guaiac slide test for hidden blood in feces relies on alphaguaiaconic acid, a chemical that turns blue in the presence of blood. Broccoli contains peroxidase, a natural chemical that also turns alphaguaiaconic acid blue and may produce a positive test in people who do not actually have blood in the stool.

Food/Drug Interactions Anticoagulants Broccoli is rich in vitamin K, the blood-clotting vitamin produced natu- rally by bacteria in the intestines. Consuming large quantities of this food may reduce the effectiveness of anticoagulants (blood thinners) such as warfarin (Coumadin). One cup of drained, boiled broccoli contains 220 mcg vitamin K, nearly four times the R DA for a healthy adult.... broccoli

Brussels Sprouts

Nutritional Profile Energy value (calories per serving): Low Protein: High Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: High Sodium: Low Major vitamin contribution: Vitamin A, folate, vitamin C Major mineral contribution: Potassium, iron

About the Nutrients in This Food Brussels sprouts are high in dietary fiber, especially insoluble cellulose and lignan in the leaf ribs. They are also a good source of vitamin A and vitamin C. One-half cup cooked fresh brussels sprouts has three grams of dietary fiber, 1,110 IU vitamin A (48 percent of the R DA for a woman, 37 percent of the R DA for a man), 47 mcg folate (16 percent of the R DA), and 48 mg vitamin C (64 percent of the R DA for a woman, 53 percent of the R DA for a man). Brussels sprouts also contain an antinutrient, a natural chemical that splits the thiamin (vitamin B1) molecule so that it is no longer nutritionally useful. This thiamin inhibitor is inactivated by cooking.

The Most Nutritious Way to Serve This Food Fresh, lightly steamed to preserve the vitamin C and inactivate the antinutrient.

Diets That May Restrict or Exclude This Food Antiflatulence diet Low-fiber diet

Buying This Food Look for: Firm, compact heads with bright, dark-green leaves, sold loose so that you can choose the sprouts one at a time. Brussels sprouts are available all year round. Avoid: Puff y, soft sprouts with yellow or wilted leaves. The yellow carotenes in the leaves show through only when the leaves age and their green chlorophyll pigments fade. Wilting leaves and puff y, soft heads are also signs of aging. Avoid sprouts with tiny holes in the leaves through which insects have burrowed.

Storing This Food Store the brussels sprouts in the refrigerator. While they are most nutritious if used soon after harvesting, sprouts will keep their vitamins (including their heat-sensitive vitamin C) for several weeks in the refrigerator. Store the sprouts in a plastic bag or covered bowl to protect them from moisture loss.

Preparing This Food First, drop the sprouts into salted ice water to flush out any small bugs hiding inside. Next, trim them. Remove yellow leaves and leaves with dark spots or tiny holes, but keep as many of the darker, vitamin A–rich outer leaves as possible. Then, cut an X into the stem end of the sprouts to allow heat and water in so that the sprouts cook faster.

What Happens When You Cook This Food Brussels sprouts contain mustard oils (isothiocyanates), natural chemicals that break down into a variety of smelly sulfur compounds (including hydrogen sulfide and ammonia) when the sprouts are heated, a reaction that is intensified in aluminum pots. The longer you cook the sprouts, the more smelly compounds there will be. Adding a slice of bread to the cook- ing water may lessen the odor; keeping a lid on the pot will stop the smelly molecules from floating off into the air. But keeping the pot covered will also increase the chemical reaction that turns cooked brussels sprouts drab. Chlorophyll, the pigment that makes green vegetables green, is sensi- tive to acids. When you heat brussels sprouts, the chlorophyll in their green leaves reacts chemically with acids in the sprouts or in the cooking water to form pheophytin, which is brown. The pheophytin turns cooked brussels sprouts olive or, since they also contain yel- low carotenes, bronze. To keep cooked brussels sprouts green, you have to reduce the interaction between chlorophyll and acids. One way to do this is to cook the sprouts in a lot of water, so the acids will be diluted, but this increases the loss of vitamin C.* Another alternative is to leave the lid off the pot so that the hydrogen atoms can float off into the air, but this allows the smelly sulfur compounds to escape, too. The best solution is to steam the sprouts quickly in very little water, so they retain their vitamin C and cook before there is time for reaction between chlorophyll and hydrogen atoms to occur.

How Other Kinds of Processing Affect This Food Freezing. Frozen brussels sprouts contain virtually the same amounts of vitamins as fresh boiled sprouts.

Medical Uses and/or Benefits Protection against cancer. Naturally occurring chemicals (indoles, isothiocyanates, gluco- sinolates, dithiolethiones, and phenols) in brussels sprouts, broccoli, cabbage, cauliflower and other cruciferous vegetables appear to reduce the risk of some cancers, perhaps by pre- venting the formation of carcinogens in your body or by blocking cancer-causing substances from reaching or reacting with sensitive body tissues or by inhibiting the transformation of healthy cells to malignant ones. All cruciferous vegetables contain sulforaphane, a member of a family of chemicals known as isothiocyanates. In experiments with laboratory rats, sulforaphane appears to increase the body’s production of phase-2 enzymes, naturally occurring substances that inac- tivate and help eliminate carcinogens. At Johns Hopkins University in Baltimore, Maryland, 69 percent of the rats injected with a chemical known to cause mammary cancer developed tumors vs. only 26 percent of the rats given the carcinogenic chemical plus sulforaphane. In 1997, the Johns Hopkins researchers discovered that broccoli seeds and three- day-old broccoli sprouts contain a compound converted to sulforaphane when the seed and sprout cells are crushed. Five grams of three-day-old broccoli sprouts contain as much sulforaphane as 150 grams of mature broccoli. The sulforaphane levels in other cruciferous vegetables have not yet been calculated. Lower risk of some birth defects. Up to two or every 1,000 babies born in the United States each year may have cleft palate or a neural tube (spinal cord) defect due to their mothers’ not having gotten adequate amounts of folate during pregnancy. NOTE : The current R DA for folate is 180 mcg for a woman and 200 mcg for a man, but the FDA now recommends * Brussels sprouts will lose as much as 25 percent of their vitamin C if you cook them in water that is cold when you start. As it boils, water releases oxygen that would otherwise destroy vitamin C. You can cut the vitamin loss dramatically simply by letting the water boil for 60 seconds before adding the sprouts. 400 mcg for a woman who is or may become pregnant. Taking a folate supplement before becoming pregnant and continuing through the first two months of pregnancy reduces the risk of cleft palate; taking folate through the entire pregnancy reduces the risk of neural tube defects. Possible lower risk of heart attack. In the spring of 1998, an analysis of data from the records for more than 80,000 women enrolled in the long-running Nurses’ Health Study at Harvard School of Public Health/Brigham and Women’s Hospital, in Boston, demonstrated that a diet providing more than 400 mcg folate and 3 mg vitamin B6 daily, either from food or supple- ments, might reduce a woman’s risk of heart attack by almost 50 percent. Although men were not included in the study, the results were assumed to apply to them as well. However, data from a meta-analysis published in the Journal of the American Medical Association in December 2006 called this theory into question. Researchers at Tulane Univer- sity examined the results of 12 controlled studies in which 16,958 patients with preexisting cardiovascular disease were given either folic acid supplements or placebos (“look-alike” pills with no folic acid) for at least six months. The scientists, who found no reduction in the risk of further heart disease or overall death rates among those taking folic acid, concluded that further studies will be required to verif y whether taking folic acid supplements reduces the risk of cardiovascular disease. Vision protection. In 2004, the Johns Hopkins researchers updated their findings on sulfora- phane to suggest that it may also protect cells in the eyes from damage due to ultraviolet light, thus reducing the risk of macular degeneration, the most common cause of age-related vision loss.

Adverse Effects Associated with This Food Enlarged thyroid gland (goiter). Cruciferous vegetables, including brussels sprouts, contain goitrin, thiocyanate, and isothiocyanate. These chemicals, known collectively as goitrogens, inhibit the formation of thyroid hormones and cause the thyroid to enlarge in an attempt to produce more. Goitrogens are not hazardous for healthy people who eat moderate amounts of cruciferous vegetables, but they may pose problems for people who have a thyroid condi- tion or are taking thyroid medication. Intestinal gas. Bacteria that live naturally in the gut degrade the indigestible carbohydrates (food fiber) in brussels sprouts and produce gas that some people find distressing.

Food/Drug Interactions Anticoagulants Brussels sprouts are rich in vitamin K, the blood-clotting vitamin produced naturally by bacteria in the intestines. Consuming large quantities of this food may reduce the effectiveness of anticoagulants (blood thinners) such as warfarin (Coumadin). One cup of drained, boiled brussels sprouts contains 219 mcg vitamin K, nearly three times the R DA for a healthy adult.... brussels sprouts

Cabbage

(Bok choy [Chinese cabbage], green cabbage, red cabbage, savoy cabbage) See also Broccoli, Brussels sprouts, Cabbage, Cauliflower, Lettuce, Radishes, Spinach, Turnips.

Nutritional Profile Energy value (calories per serving): Low Protein: Moderate Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Low Sodium: Low Major vitamin contribution: Vitamin A, folate, vitamin C Major mineral contribution: Calcium (moderate)

About the Nutrients in This Food All cabbage has some dietary fiber food: insoluble cellulose and lignin in the ribs and structure of the leaves. Depending on the variety, it has a little vitamin A, moderate amounts of the B vitamin folate and vitamin C. One-half cup shredded raw bok choy has 0.1 g dietary fiber, 1,041 IU vitamin A (45 percent of the R DA for a woman, 35 percent of the R DA for a man), and 15.5 mg vitamin C (21 percent of the R DA for a woman, 17 percent of the R DA for a man). One-half cup shredded raw green cabbage has 0.5 g dietary fiber, 45 IU vitamin A (1.9 percent of the R DA for a woman, 1.5 percent of the R DA for a man), 15 mcg folate (4 percent of the R DA), and 11 mg vitamin C (15 percent of the R DA for a woman, 12 percent of the R DA for a man). One-half cup chopped raw red cabbage has 0.5 g dietary fiber, 7 mcg folate (2 percent of the R DA), and 20 mg vitamin C (27 percent of the R DA for a woman, 22 percent of the R DA for a man). One-half cup chopped raw savoy cabbage has one gram dietary fiber, 322 IU vitamin A (14 percent of the R DA for a woman, 11 percent of the R DA for a man), and 11 mg vitamin C (15 percent of the R DA for a woman, 12 percent of the R DA for a man). Raw red cabbage contains an antinutrient enzyme that splits the thiamin molecule so that the vitamin is no longer nutritionally useful. This thiamin in hibitor is inactivated by cooking.

The Most Nutritious Way to Serve This Food Raw or lightly steamed to protect the vitamin C.

Diets That May Restrict or Exclude This Food Antiflatulence diet Low-fiber diet

Buying This Food Look for: Cabbages that feel heavy for their size. The leaves should be tightly closed and attached tightly at the stem end. The outer leaves on a savoy cabbage may curl back from the head, but the center leaves should still be relatively tightly closed. Also look for green cabbages that still have their dark-green, vitamin-rich outer leaves. Avoid: Green and savoy cabbage with yellow or wilted leaves. The yellow carotene pig- ments show through only when the cabbage has aged and its green chlorophyll pigments have faded. Wilted leaves mean a loss of moisture and vitamins.

Storing This Food Handle cabbage gently; bruising tears cells and activates ascorbic acid oxidase, an enzyme in the leaves that hastens the destruction of vitamin C. Store cabbage in a cool, dark place, preferably a refrigerator. In cold storage, cabbage can retain as much as 75 percent of its vitamin C for as long as six months. Cover the cabbage to keep it from drying out and losing vitamin A.

Preparing This Food Do not slice the cabbage until you are ready to use it; slicing tears cabbage cells and releases the enzyme that hastens the oxidation and destruction of vitamin C. If you plan to serve cooked green or red cabbage in wedges, don’t cut out the inner core that hold the leaves together. To separate the leaves for stuffing, immerse the entire head in boiling water for a few minutes, then lift it out and let it drain until it is cool enough to handle comfortably. The leaves should pull away easily. If not, put the cabbage back into the hot water for a few minutes.

What Happens When You Cook This Food Cabbage contains mustard oils (isothiocyanates) that break down into a variet y of smelly sulfur compounds (including hydrogen sulfide and ammon ia) when the cabbage is heated, a reaction that occurs more strongly in aluminum pots. The longer you cook the cabbage, the more smelly the compounds will be. Adding a slice of bread to the cooking water may lessen the odor. Keeping a lid on the pot will stop the smelly molecules from floating off into the air, but it will also accelerate the chemical reaction that turns cooked green cabbage drab. Chlorophyll, the pigment that makes green vegetables green, is sensitive to acids. When you heat green cabbage, the chlorophyll in its leaves reacts chemically with acids in the cabbage or in the cooking water to form pheophytin, which is brown. The pheophytin gives the cooked cabbage its olive color. To keep cooked green cabbage green, you have to reduce the interaction between the chlorophyll and the acids. One way to do this is to cook the cabbage in a large quantity of water, so the acids will be diluted, but this increases the loss of vitamin C.* Another alternative is to leave the lid off the pot so that the volatile acids can float off into the air, but this allows the smelly sulfur compounds to escape too. The best way may be to steam the cabbage ver y quickly in ver y little water so that it keeps its vitamin C and cooks before there is time for the chlorophyll/acid reaction to occur. Red cabbage is colored with red anthocyanins, pigments that turn redder in acids (lemon juice, vinegar) and blue purple in bases (alkaline chemicals such as baking soda). To keep the cabbage red, make sweet-and-sour cabbage. But be careful not to make it in an iron or aluminum pot, since vinegar (which contains tannins) will react with these metals to create dark pigments that discolor both the pot and the vegetable. Glass, stainless-steel, or enameled pots do not produce this reaction.

How Other Kinds of Processing Affect This Food Pickling. Sauerkraut is a fermented and pickled produce made by immersing cabbage in a salt solution strong enough to kill off pathological bacteria but allow beneficial ones to sur- vive, breaking down proteins in the cabbage and producing the acid that gives sauerkraut its distinctive flavor. Sauerkraut contains more than 37 times as much sodium as fresh cabbage (661 mg sodium/100 grams canned sauerkraut with liquid) but only one third the vitamin C and one-seventh the vitamin A. * According to USDA, if you cook t hree cups of cabbage in one cup of water you will lose only 10 percent of t he vitamin C; reverse t he rat io to four t imes as much water as cabbage and you will lose about 50 percent of t he vitamin C. Cabbage will lose as much as 25 percent of its vitamin C if you cook it in water t hat is cold when you start. As it boils, water releases ox ygen t hat would ot her wise dest roy vitamin C, so you can cut t he vitamin loss dramat ically simply by lett ing t he water boil for 60 seconds before adding t he cabbage.

Medical Uses and/or Benefits Protection against certain cancers. Naturally occurring chemicals (indoles, isothiocyanates, glucosinolates, dithiolethiones, and phenols) in cabbage, brussels sprouts, broccoli, cauli- flower, and other cruciferous vegetables appear to reduce the risk of some cancers, perhaps by preventing the formation of carcinogens in your body or by blocking cancer-causing substances from reaching or reacting with sensitive body tissues or by inhibiting the trans- formation of healthy cells to malignant ones. All cruciferous vegetables contain sulforaphane, a member of a family of chemicals known as isothiocyanates. In experiments with laboratory rats, sulforaphane appears to increase the body’s production of phase-2 enzymes, naturally occurring substances that inac- tivate and help eliminate carcinogens. At Johns Hopkins University in Baltimore, Maryland, 69 percent of the rats injected with a chemical known to cause mammary cancer developed tumors vs. only 26 percent of the rats given the carcinogenic chemical plus sulforaphane. In 1997, Johns Hopkins researchers discovered that broccoli seeds and three-day-old broccoli sprouts contain a compound converted to sulforaphane when the seed and sprout cells are crushed. Five grams of three-day-old broccoli sprouts contain as much sulforaphane as 150 grams of mature broccoli. The sulforaphane levels in other cruciferous vegetables have not yet been calculated. Vision protection. In 2004, the Johns Hopkins researchers updated their findings on sulfora- phane to suggest that it may also protect cells in the eyes from damage due to ultraviolet light, thus reducing the risk of macular degeneration, the most common cause of age-related vision loss. Lower risk of some birth defects. As many as two of every 1,000 babies born in the United States each year may have cleft palate or a neural tube (spinal cord) defect due to their moth- ers’ not having gotten adequate amounts of folate during pregnancy. The current R DA for folate is 180 mcg for a woman and 200 mcg for a man, but the FDA now recommends 400 mcg for a woman who is or may become pregnant. Taking a folate supplement before becom- ing pregnant and through the first two months of pregnancy reduces the risk of cleft palate; taking folate through the entire pregnancy reduces the risk of neural tube defects. Possible lower risk of heart attack. In the spring of 1998, an analysis of data from the records for more than 80,000 women enrolled in the long-running Nurses’ Health Study at Harvard School of Public Health/Brigham and Women’s Hospital, in Boston, demonstrated that a diet providing more than 400 mcg folate and 3 mg vitamin B6 daily, either from food or supple- ments, might reduce a woman’s risk of heart attack by almost 50 percent. Although men were not included in the study, the results were assumed to apply to them as well. However, data from a meta-analysis published in the Journal of the American Medical Association in December 2006 called this theory into question. Researchers at Tulane Univer- sity examined the results of 12 controlled studies in which 16,958 patients with preexisting cardiovascular disease were given either folic acid supplements or placebos (“look-alike” pills with no folic acid) for at least six months. The scientists, who found no reduction in the risk of further heart disease or overall death rates among those taking folic acid, concluded that further studies will be required to verif y whether taking folic acid supplements reduces the risk of cardiovascular disease.

Adverse Effects Associated with This Food Enlarged thyroid gland (goiter). Cruciferous vegetables, including cabbage, contain goitrin, thiocyanate, and isothiocyanate. These chemicals, known collectively as goitrogens, inhibit the formation of thyroid hormones and cause the thyroid to enlarge in an attempt to pro- duce more. Goitrogens are not hazardous for healthy people who eat moderate amounts of cruciferous vegetables, but they may pose problems for people who have a thyroid condition or are taking thyroid medication. Intestinal gas. Bacteria that live naturally in the gut degrade the indigestible carbohydrates (food fiber) in cabbage, producing gas that some people find distressing.

Food/Drug Interactions Anticoagulants Cabbage contains vitamin K, the blood-clotting vitamin produced natu- rally by bacteria in the intestines. Consuming large quantities of this food may reduce the effectiveness of anticoagulants (blood thinners) such as warfarin (Coumadin). One cup of shredded common green cabbage contains 163 mcg vitamin K, nearly three times the R DA for a healthy adult; one cup of drained boiled common green cabbage contains 73 mcg vita- min K, slightly more than the R DA for a healthy adult. Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyra- mine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. If you eat a food such as sauerkraut which is high in tyramine while you are taking an M AO inhibitor, you cannot effectively eliminate the tyramine from your body. The result may be a hypertensive crisis.... cabbage

Cheese

Nutritional Profile Energy value (calories per serving): Moderate to high Protein: Moderate to high Fat: Low to high Saturated fat: High Cholesterol: Low to high Carbohydrates: Low Fiber: None Sodium: High Major vitamin contribution: Vitamin A, vitamin D, B vitamins Major mineral contribution: Calcium

About the Nutrients in This Food Cheese making begins when Lactobacilli and/or Streptococci bacteria are added to milk. The bacteria digest lactose (milk sugar) and release lactic acid, which coagulates casein (milk protein) into curds. Rennet (gastric enzymes extracted from the stomach of calves) is added, and the mixture is put aside to set. The longer the curds are left to set, the firmer the cheese will be. When the curds are properly firm, they are pressed to squeeze out the whey (liquid) and cooked. Cooking evaporates even more liquid and makes the cheese even firmer.* At this point, the product is “fresh” or “green” cheese: cottage cheese, cream cheese, farmer cheese. Making “ripe” cheese requires the addition of salt to pull out more moisture and specific organisms, such as Penicil- lium roquefort for Roquefort cheese, blue cheese, and Stilton, or Penicillium cambembert for Camembert and Brie. The nutritional value of cheese is similar to the milk from which it is made. All cheese is a good source of high quality proteins with sufficient amounts of all the essential amino acids. Cheese is low to high in fat, mod- erate to high in cholesterol. * Natural cheese is cheese made direct ly from milk. Processed cheese is natural cheese melted and combined wit h emulsifiers. Pasteurized process cheese foods contain ingredients t hat allow t hem to spread smoot hly; t hey are lower in fat and higher in moisture t han processed cheese. Cholesterol and Saturated Fat Content of Selected Cheeses Mozzarella Source: USDA, Nutritive Value of Foods, Home and Garden Bullet in No. 72 (USDA, 1989). All cheeses, except cottage cheese, are good sources of vitamin A. Orange and yellow cheeses are colored with carotenoid pigments, including bixin (the carotenoid pigment in annatto) and synthetic beta-carotene. Hard cheeses are an excellent source of calcium; softer cheeses are a good source; cream cheese and cottage cheese are poor sources. The R DA for calcium is 1,000 mg for a woman, 1,200 mg for a man, and 1,500 mg for an older woman who is not on hormone- replacement therapy. All cheese, unless otherwise labeled, is high in sodium.

Calcium Content of Cheese  
  Cheese   Serving   Calcium (mg)
Blue oz. 150
Camembert wedge 147
Cheddar oz. 204
Cottage cheese    
creamed cup 135
uncreamed cup 46
Muenster oz. 203
Pasteurized processed American oz. 174
Parmesan grated tbsp. 69
Provolone oz. 214
Swiss oz. 272
  Source: Nutritive Value of Foods, Home and Gardens Bullet in No. 72 (USDA, 1989).

The Most Nutritious Way to Serve This Food With grains, bread, noodles, beans, nuts, or vegetables to add the essential amino acids miss- ing from these foods, “complete” their proteins, and make them more nutritionally valuable.

Diets That May Restrict or Exclude This Food Antiflatulence diet Controlled-fat, low-cholesterol diet Lactose- and galactose-free diet (lactose, a disaccharide [double sugar] is composed of one unit of galactose and one unit of glucose) Low-calcium diet (for patients with kidney disease) Sucrose-free diet (processed cheese)

Buying This Food Look for: Cheese stored in a refrigerated case. Check the date on the package. Avoid: Any cheese with mold that is not an integral part of the food.

Storing This Food Refrigerate all cheese except unopened canned cheeses (such as Camembert in tins) or grated cheeses treated with preservatives and labeled to show that they can be kept outside the refrigerator. Some sealed packages of processed cheeses can be stored at room temperature but must be refrigerated once the package is opened. Wrap cheeses tightly to protect them from contamination by other microorganisms in the air and to keep them from drying out. Well-wrapped, refrigerated hard cheeses that have not been cut or sliced will keep for up to six months; sliced hard cheeses will keep for about two weeks. Soft cheeses (cottage cheese, ricotta, cream cheese, and Neufchatel) should be used within five to seven days. Use all packaged or processed cheeses by the date stamped on the package. Throw out moldy cheese (unless the mold is an integral part of the cheese, as with blue cheese or Stilton).

Preparing This Food To grate cheese, chill the cheese so it won’t stick to the grater. The molecules that give cheese its taste and aroma are largely immobilized when the cheese is cold. When serving cheese with fruit or crackers, bring it to room temperature to activate these molecules.

What Happens When You Cook This Food Heat changes the structure of proteins. The molecules are denatured, which means that they may be broken into smaller fragments or change shape or clump together. All of these changes may force moisture out of the protein tissue, which is why overcooked cheese is often stringy. Whey proteins, which do not clump or string at low temperatures, contain the sulfur atoms that give hot or burned cheese an unpleasant “cooked” odor. To avoid both strings and an unpleasant odor, add cheese to sauces at the last minute and cook just long enough to melt the cheese.

How Other Kinds of Processing Affect This Food Freezing. All cheese loses moisture when frozen, so semisoft cheeses will freeze and thaw better than hard cheeses, which may be crumbly when defrosted. Drying. The less moisture cheese contains, the less able it is to support the growth of organ- isms like mold. Dried cheeses keep significantly longer than ordinary cheeses.

Medical Uses and/or Benefits To strengthen bones and reduce age-related loss of bone density. High-calcium foods protect bone density. The current recommended dietary allowance (R DA) for calcium is still 800 mg for adults 25 and older, but a 1984 National Institutes of Health (NIH) Conference advisory stated that lifelong protection for bones requires an R DA of 1,000 mg for healthy men and women age 25 to 50 ; 1,000 mg for older women using hormone replacement therapy; and 1,500 mg for older women who are not using hormones, and these recommendations have been confirmed in a 1994 NIH Consensus Statement on optimal calcium intake. A diet with adequate amounts of calcium-rich foods helps protect bone density. Low-fat and no-fat cheeses provide calcium without excess fat and cholesterol. Protection against tooth decay. Studies at the University of Iowa (Iowa City) Dental School confirm that a wide variety of cheeses, including aged cheddar, Edam, Gouda, Monterey Jack, Muenster, mozzarella, Port Salut, Roquefort, Romano, Stilton, Swiss, and Tilsit—limit the tooth decay ordinarily expected when sugar becomes trapped in plaque, the sticky film on tooth surfaces where cavity-causing bacteria flourish. In a related experiment using only cheddar cheese, people who ate cheddar four times a day over a two-week period showed a 20 percent buildup of strengthening minerals on the surface of synthetic toothlike material attached to the root surfaces of natural teeth. Protection against periodontal disease. A report in the January 2008 issue of the Journal of Periodontology suggests that consuming adequate amounts of dairy products may reduce the risk of developing periodontal disease. Examining the dental health of 942 subjects ages 40 to 79, researchers at Kyushu University, in Japan, discovered that those whose diets regularly included two ounces (55 g) of foods containing lactic acid (milk, cheese, and yogurt) were significantly less likely to have deep “pockets” (loss of attachment of tooth to gum) than those who consumed fewer dairy products.

Adverse Effects Associated with This Food Increased risk of heart disease. Like other foods from animals, cheese is a source of choles- terol and saturated fats, which increase the amount of cholesterol circulating in your blood and raise your risk of heart disease. To reduce the risk of heart disease, the USDA /Health and Human Services Dietary Guidelines for Americans recommends limiting the amount of cholesterol in your diet to no more than 300 mg a day. The guidelines also recommend limit- ing the amount of fat you consume to no more than 30 percent of your total calories, while holding your consumption of saturated fats to more than 10 percent of your total calories (the calories from saturated fats are counted as part of the total calories from fat). Food poisoning. Cheese made from raw (unpasteurized) milk may contain hazardous microorganisms, including Salmonella and Listeria. Salmonella causes serious gastric upset; Lis- teria, a flulike infection, encephalitis, or blood infection. Both may be life-threatening to the very young, the very old, pregnant women, and those whose immune systems are weakened either by illness (such as AIDS) or drugs (such as cancer chemotherapy). In 1998, the Federal Centers for Disease Control (CDC) released data identif ying Listeria as the cause of nearly half the reported deaths from food poisoning. Allergy to milk proteins. Milk is one of the foods most frequently implicated as a cause of allergic reactions, particularly upset stomach. However, in many cases the reaction is not a true allergy but the result of lactose intolerance (see below). Lactose intolerance. Lactose intolerance—the inability to digest the sugar in milk—is an inherited metabolic deficiency that affects two thirds of all adults, including 90 to 95 percent of all Orientals, 70 to 75 percent of all blacks, and 6 to 8 percent of Caucasians. These people do not have sufficient amounts of lactase, the enzyme that breaks the disaccharide lactose into its easily digested components, galactose and glucose. When they drink milk, the undi- gested sugar is fermented by bacteria in the gut, causing bloating, diarrhea, flatulence, and intestinal discomfort. Some milk is now sold with added lactase to digest the lactose and make the milk usable for lactase-deficient people. In making cheese, most of the lactose in milk is broken down into glucose and galactose. There is very little lactose in cheeses other than the fresh ones—cottage cheese, cream cheese, and farmer cheese. Galactosemia. Galactosemia is an inherited metabolic disorder in which the body lacks the enzymes needed to metabolize galactose, a component of lactose. Galactosemia is a reces- sive trait; you must receive the gene from both parents to develop the condition. Babies born with galactosemia will fail to thrive and may develop brain damage or cataracts if they are given milk. To prevent this, children with galactosemia are usually kept on a protective milk- free diet for several years, until their bodies have developed alternative pathways by which to metabolize galactose. Pregnant women who are known carriers of galactosemia may be advised to give up milk and milk products while pregnant lest the unmetabolized galactose in their bodies cause brain damage to the fetus (damage not detectable by amniocentesis). Genetic counseling is available to identif y galactosemia carriers and assess their chances of producing a baby with the disorder. Penicillin sensitivity. People who experience a sensitivity reaction the first time they take penicillin may have been sensitized by exposure to the Penicillium molds in the environment, including the Penicillium molds used to make brie, blue, camembert, roquefort, Stilton, and other “blue” cheeses.

Food/Drug Interactions Tetracycline. The calcium ions in milk products, including cheese, bind tetracyclines into insoluble compounds. If you take tetracyclines with cheese, your body may not be able to absorb and use the drug efficiently. Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyra- mine, a substance found in many fermented or aged foods. Tyramine constricts blood ves- sels and increases blood pressure. If you eat a food such as aged or fermented cheese which is high in tyramine while you are taking an M AO inhibitor, your body may not be able to eliminate the tyramine. The result may be a hypertensive crisis.

Tyramine Content of Cheeses High Boursault, Camembert, Cheddar, Emmenthaler, Stilton Medium to high Blue, brick, Brie, Gruyère, mozzarella, Parmesan, Romano, Roquefort Low Processed American cheese Very little or none Cottage and cream cheese Sources: The Medical Letter Handbook of Adverse Drug Interactions (1985); Handbook of Clinical Dietetics ( The A merican Dietet ic Associat ion, 1981). False-positive test for pheochromocytoma. Pheochromocytomas (tumors of the adrenal glands) secrete adrenalin that is converted by the body to vanillyl-mandelic acid ( VM A) and excreted in the urine. Tests for this tumor measure the level of VM A in the urine. Since cheese contains VM A, taking the test after eating cheese may result in a false-positive result. Ordinarily, cheese is prohibited for at least 72 hours before this diagnostic test.... cheese

Chocolate

(Cocoa, milk chocolate, sweet chocolate)

Nutritional Profile Energy value (calories per serving): Moderate Protein: Low (cocoa powder) High (chocolate) Fat: Moderate Saturated fat: High Cholesterol: None Carbohydrates: Low (chocolate) High (cocoa powder) Fiber: Moderate (chocolate) High (cocoa powder) Sodium: Moderate Major vitamin contribution: B vitamins Major mineral contribution: Calcium, iron, copper

About the Nutrients in This Food Cocoa beans are high-carbohydrate, high-protein food, with less dietary fiber and more fat than all other beans, excepting soy beans. The cocoa bean’s dietary fiber includes pectins and gums. Its proteins are limited in the essential amino acids lysine and isoleucine. Cocoa butter, the fat in cocoa beans, is the second most highly saturated vegetable fat (coconut oil is number one), but it has two redeeming nutritional qualities. First, it rarely turns rancid. Second, it melts at 95°F, the temperature of the human tongue. Cocoa butter has no cholesterol; neither does plain cocoa powder or plain dark chocolate. Cocoa beans have B vitamins (thiamine, riboflavin, niacin) plus min- erals (iron, magnesium, potassium, phosphorus, and copper). All chocolate candy is made from chocolate liquor, a thick paste pro- duce by roasting and grinding cocoa beans. Dark (sweet) chocolate is made of chocolate liquor, cocoa butter, and sugar. Milk chocolate is made of choc- olate liquor, cocoa butter, sugar, milk or milk powder, and vanilla. White * These values apply to plain cocoa powder and plain unsweetened chocolate. Add- ing other foods, such as milk or sugar, changes these values. For example, there is no cholesterol in plain bitter chocolate, but there is cholesterol in milk chocolate. chocolate is made of cocoa butter, sugar, and milk powder. Baking chocolate is unsweetened dark chocolate. The most prominent nutrient in chocolate is its fat. Fat Content in One Ounce of Chocolate

Saturated fat (g) Monounsaturated fat (g) Polyunsaturated fat (g) Cholesterol (mg)
Dark (sweet)
chocolate 5.6 3.2 0.3 0
Milk chocolate 5.9 4.5 0.4 6.6
Baking chocolate 9 5.6 0.3 0
White chocolate 5.5 2.6 0.3 0
  Source: USDA Nut rient Data Laborator y. Nat ional Nut rient Database for Standard Reference. Available online. UR L : http://w w w.nal.usda.gov/fnic/foodcomp/search /. Because chocolate is made from a bean, it also contains dietary fiber and measurable amounts of certain minerals. For example, one ounce of dark chocolate, the most nutritious “eating” chocolate, has 1.6 g dietary fiber, 0.78 mg iron (4 percent of the R DA for a woman, 10 percent of the R DA for a man), 32 mg magnesium (11 percent of the R DA for a woman, 8 percent of the R DA for a man), and .43 mg zinc (5 percent of the R DA for a woman, 4 percent of the R DA for a man). Cocoa beans, cocoa, and chocolate contain caffeine, the muscle stimulant theobro- mine, and the mood-altering chemicals phenylethylalanine and anandamide (see below).

The Most Nutritious Way to Serve This Food With low-fat milk to complete the proteins without adding saturated fat and cholesterol. NOTE : Both cocoa and chocolate contain oxalic acid, which binds with calcium to form cal- cium oxalate, an insoluble compound, but milk has so much calcium that the small amount bound to cocoa and chocolate hardly matters. Chocolate skim milk is a source of calcium.

Diets That May Restrict or Exclude This Food Antiflatulence diet Low-calcium and low-oxalate diet (to prevent the formation of calcium oxalate kidney stones) Low-calorie diet Low-carbohydrate diet Low-fat diet Low-fat, controlled-cholesterol diet (milk chocolates) Low-fiber diet Potassium-regulated (low-potassium) diet

Buying This Food Look for: Tightly sealed boxes or bars. When you open a box of chocolates or unwrap a candy bar, the chocolate should be glossy and shiny. Chocolate that looks dull may be stale, or it may be inexpensively made candy without enough cocoa butter to make it gleam and give it the rich creamy mouthfeel we associate with the best chocolate. (Fine chocolate melts evenly on the tongue.) Chocolate should also smell fresh, not dry and powdery, and when you break a bar or piece of chocolate it should break cleanly, not crumble. One exception: If you have stored a bar of chocolate in the refrigerator, it may splinter if you break it without bringing it to room temperature first.

Storing This Food Store chocolate at a constant temperature, preferably below 78°F. At higher temperatures, the fat in the chocolate will rise to the surface and, when the chocolate is cooled, the fat will solidif y into a whitish powdery bloom. Bloom is unsightly but doesn’t change the chocolate’s taste or nutritional value. To get rid of bloom, melt the chocolate. The chocolate will turn dark, rich brown again when its fat recombines with the other ingredients. Chocolate with bloom makes a perfectly satisfactory chocolate sauce. Dark chocolate (bitter chocolate, semisweet chocolate) ages for at least six months after it is made, as its flavor becomes deeper and more intense. Wrapped tightly and stored in a cool, dry cabinet, it can stay fresh for a year or more. Milk chocolate ages only for about a month after it is made and holds its peak flavor for about three to six months, depending on how carefully it is stored. Plain cocoa, with no added milk powder or sugar, will stay fresh for up to a year if you keep it tightly sealed and cool.

What Happens When You Cook This Food Chocolate burns easily. To melt it without mishap, stir the chocolate in a bowl over a pot of hot water or in the top of a double boiler or put the chocolate in a covered dish and melt it in the microwave (which does not get as hot as a pot on the store). Simple chemistry dictates that chocolate cakes be leavened with baking soda rather than baking powder. Chocolate is so acidic that it will upset the delicate balance of acid (cream of tartar) and base (alkali = sodium bicarbonate = baking soda) in baking powder. But it is not acidic enough to balance plain sodium bicarbonate. That’s why we add an acidic sour-milk product such as buttermilk or sour cream or yogurt to a chocolate cake. Without the sour milk, the batter would be so basic that the chocolate would look red, not brown, and taste very bitter.

How Other Kinds of Processing Affect This Food Freezing. Chocolate freezes and thaws well. Pack it in a moistureproof container and defrost it in the same package to let it reabsorb moisture it gave off while frozen.

Medical Uses and/or Benefits Mood elevator. Chocolate’s reputation for making people feel good is based not only on its caffeine content—19 mg caffeine per ounce of dark (sweet) chocolate, which is one-third the amount of caffeine in a five-ounce cup of brewed coffee—but also on its naturally occurring mood altering chemicals phenylethylalanine and anandamide. Phenylethylalanine is found in the blood of people in love. Anandamide stimulates areas of your brain also affected by the active ingredients in marijuana. (NOTE : As noted by the researchers at the Neurosci- ences Institute in San Diego who identified anandamide in chocolate in 1996, to get even the faintest hint of marijuana-like effects from chocolate you would have to eat more than 25 pounds of the candy all at once.) Possible heart health benefits. Chocolate is rich in catechins, the antioxidant chemicals that give tea its reputation as a heart-protective anticancer beverage (see tea). In addition, a series of studies beginning with those at the USDA Agricultural Research Center in Peoria, Illinois, suggest that consuming foods rich in stearic acid like chocolate may reduce rather than raise the risk of a blood clot leading to a heart attack. Possible slowing of the aging process. Chocolate is a relatively good source of copper, a mineral that may play a role in slowing the aging process by decreasing the incidence of “protein glycation,” a reaction in which sugar molecules ( gly = sugar) hook up with protein molecules in the bloodstream, twisting the protein molecules out of shape and rendering them unusable. This can lead to bone loss, rising cholesterol, cardiac abnormalities, and a slew of other unpleasantries. In people with diabetes, excess protein glycation may be one factor involved in complications such as loss of vision. Ordinarily, increased protein glyca- tion is age-related. But at the USDA Grand Forks Human Nutrition Research Center in North Dakota, agricultural research scientist Jack T. Saari has found that rats on copper-deficient diets experience more protein glycation at any age than other rats. A recent USDA survey of American eating patterns says that most of us get about 1.2 mg copper a day, considerably less than the Estimated Safe and Adequate Daily Dietary Intake (ESADDI) or 1.5 mg to 3 mg a day. Vegetarians are less likely to be copper deficient because, as Saari notes, the foods highest in copper are whole grains, nuts, seeds, and beans, including the cocoa bean. One ounce of dark chocolate has .25 mg copper (8 –17 percent of the ESADDI).

Adverse Effects Associated with This Food Possible loss of bone density. In 2008, a team of Australian researchers at Royal Perth Hos- pital, and Sir Charles Gairdner Hospital published a report in the American Journal of Clinical Nutrition suggesting that women who consume chocolate daily had 3.1 percent lower bone density than women who consume chocolate no more than once a week. No explanation for the reaction was proposed; the finding remains to be confirmed. Possible increase in the risk of heart disease. Cocoa beans, cocoa powder, and plain dark chocolate are high in saturated fats. Milk chocolate is high in saturated fats and cholesterol. Eating foods high in saturated fats and cholesterol increases the amount of cholesterol in your blood and raises your risk of heart disease. NOTE : Plain cocoa powder and plain dark chocolate may be exceptions to this rule. In studies at the USDA Agricultural Research Center in Peoria, Illinois, volunteers who consumed foods high in stearic acid, the saturated fat in cocoa beans, cocoa powder, and chocolate, had a lower risk of blood clots. In addition, chocolate is high in flavonoids, the antioxidant chemicals that give red wine its heart-healthy reputation. Mild jitters. There is less caffeine in chocolate than in an equal size serving of coffee: A five- ounce cup of drip-brewed coffee has 110 to 150 mg caffeine; a five-ounce cup of cocoa made with a tablespoon of plain cocoa powder ( 1/3 oz.) has about 18 mg caffeine. Nonetheless, people who are very sensitive to caffeine may find even these small amounts problematic. Allergic reaction. According to the Merck Manual, chocolate is one of the 12 foods most likely to trigger the classic food allergy symptoms: hives, swelling of the lips and eyes, and upset stomach.* The others are berries (blackberries, blueberries, raspberries, strawberries), corn, eggs, fish, legumes (green peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see wheat cer ea ls).

Food/Drug Interactions Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyra- mine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. Caffeine is a substance similar to tyramine. If you consume excessive amounts of a caffeinated food, such as cocoa or chocolate, while you are taking an M AO inhibitor, the result may be a hypertensive crisis. False-positive test for pheochromocytoma. Pheochromocytoma, a tumor of the adrenal gland, secretes adrenalin, which the body converts to VM A (vanillylmandelic acid). VM A is excreted in urine, and, until recently, the test for this tumor measured the level of VM A in the urine. In the past, chocolate and cocoa, both of which contain VM A, were eliminated from the patient’s diet prior to the test lest they elevate the level of VM A in the urine and produce a false-positive result. Today, more finely drawn tests usually make this unnecessary. * The evidence link ing chocolate to allergic or migraine headaches is inconsistent. In some people, phenylet hylamine (PEA) seems to cause headaches similar to t hose induced by t yramine, anot her pressor amine. The PEA-induced headache is unusual in t hat it is a delayed react ion t hat usually occurs 12 or more hours after t he chocolate is eaten.... chocolate

Coffee

Nutritional Profile Energy value (calories per serving): Low Protein: Trace Fat: Trace Saturated fat: None Cholesterol: None Carbohydrates: Trace Fiber: Trace Sodium: Low Major vitamin contribution: None Major mineral contribution: None

About the Nutrients in This Food Coffee beans are roasted seeds from the fruit of the evergreen coffee tree. Like other nuts and seeds, they are high in proteins (11 percent), sucrose and other sugars (8 percent), oils (10 to 15 percent), assorted organic acids (6 percent), B vitamins, iron, and the central nervous system stimulant caffeine (1 to 2 percent). With the exceptions of caffeine, none of these nutrients is found in coffee. Like spinach, rhubarb, and tea, coffee contains oxalic acid (which binds calcium ions into insoluble compounds your body cannot absorb), but this is of no nutritional consequence as long as your diet contains adequate amounts of calcium-rich foods. Coffee’s best known constituent is the methylxanthine central ner- vous system stimulant caffeine. How much caffeine you get in a cup of coffee depends on how the coffee was processed and brewed. Caffeine is Caffeine Content/Coffee Servings Brewed coffee 60 mg/five-ounce cup Brewed/decaffeinated 5 mg/five-ounce cup Espresso  64 mg/one-ounce serving Instant  47 mg/rounded teaspoon

The Most Nutritious Way to Serve This Food In moderation, with high-calcium foods. Like spinach, rhubarb, and tea, coffee has oxalic acid, which binds calcium into insoluble compounds. This will have no important effect as long as you keep your consumption moderate (two to four cups of coffee a day) and your calcium consumption high.

Diets That May Restrict or Exclude This Food Bland diet Gout diet Diet for people with heart disease (regular coffee)

Buying This Food Look for: Ground coffee and coffee beans in tightly sealed, air- and moisture-proof containers. Avoid: Bulk coffees or coffee beans stored in open bins. When coffee is exposed to air, the volatile molecules that give it its distinctive flavor and richness escape, leaving the coffee flavorless and/or bitter.

Storing This Food Store unopened vacuum-packed cans of ground coffee or coffee beans in a cool, dark cabinet—where they will stay fresh for six months to a year. They will lose some flavor in storage, though, because it is impossible to can coffee without trapping some flavor- destroying air inside the can. Once the can or paper sack has been opened, the coffee or beans should be sealed as tight as possible and stored in the refrigerator. Tightly wrapped, refrigerated ground coffee will hold its freshness and flavor for about a week, whole beans for about three weeks. For longer storage, freeze the coffee or beans in an air- and moistureproof container. ( You can brew coffee directly from frozen ground coffee and you can grind frozen beans without thawing them.)

Preparing This Food If you make your coffee with tap water, let the water run for a while to add oxygen. Soft water makes “cleaner”-tasting coffee than mineral-rich hard water. Coffee made with chlorinated water will taste better if you refrigerate the water overnight in a glass (not plastic) bottle so that the chlorine evaporates. Never make coffee with hot tap water or water that has been boiled. Both lack oxygen, which means that your coffee will taste flat. Always brew coffee in a scrupulously clean pot. Each time you make coffee, oils are left on the inside of the pot. If you don’t scrub them off, they will turn rancid and the next pot of coffee you brew will taste bitter. To clean a coffee pot, wash it with detergent, rinse it with water in which you have dissolved a few teaspoons of baking soda, then rinse one more time with boiling water.

What Happens When You Cook This Food In making coffee, your aim is to extract flavorful solids (including coffee oils and sucrose and other sugars) from the ground beans without pulling bitter, astringent tannins along with them. How long you brew the coffee determines how much solid material you extract and how the coffee tastes. The longer the brewing time, the greater the amount of solids extracted. If you brew the coffee long enough to extract more than 30 percent of its solids, you will get bitter compounds along with the flavorful ones. (These will also develop by let- ting coffee sit for a long time after brewing it.) Ordinarily, drip coffee tastes less bitter than percolator coffee because the water in a drip coffeemaker goes through the coffee only once, while the water in the percolator pot is circulated through the coffee several times. To make strong but not bitter coffee, increase the amount of coffee—not the brewing time.

How Other Kinds of Processing Affect This Food Drying. Soluble coffees (freeze-dried, instant) are made by dehydrating concentrated brewed coffee. These coffees are often lower in caffeine than regular ground coffees because caffeine, which dissolves in water, is lost when the coffee is dehydrated. Decaffeinating. Decaffeinated coffee is made with beans from which the caffeine has been extracted, either with an organic solvent (methylene chloride) or with water. How the coffee is decaffeinated has no effect on its taste, but many people prefer water-processed decaf- feinated coffee because it is not a chemically treated food. (Methylene chloride is an animal carcinogen, but the amounts that remain in coffees decaffeinated with methylene chloride are so small that the FDA does not consider them hazardous. The carcinogenic organic sol- vent trichloroethylene [TCE], a chemical that causes liver cancer in laboratory animals, is no longer used to decaffeinate coffee.)

Medical Uses and/or Benefits As a stimulant and mood elevator. Caffeine is a stimulant. It increases alertness and concentra- tion, intensifies muscle responses, quickens heartbeat, and elevates mood. Its effects derive from the fact that its molecular structure is similar to that of adenosine, a natural chemical by-product of normal cell activity. Adenosine is a regular chemical that keeps nerve cell activ- ity within safe limits. When caffeine molecules hook up to sites in the brain when adenosine molecules normally dock, nerve cells continue to fire indiscriminately, producing the jangly feeling sometimes associated with drinking coffee, tea, and other caffeine products. As a rule, it takes five to six hours to metabolize and excrete caffeine from the body. During that time, its effects may vary widely from person to person. Some find its stimu- lation pleasant, even relaxing; others experience restlessness, nervousness, hyperactivity, insomnia, flushing, and upset stomach after as little as one cup a day. It is possible to develop a tolerance for caffeine, so people who drink coffee every day are likely to find it less imme- diately stimulating than those who drink it only once in a while. Changes in blood vessels. Caffeine’s effects on blood vessels depend on site: It dilates coronary and gastrointestinal vessels but constricts blood vessels in your head and may relieve headache, such as migraine, which symptoms include swollen cranial blood vessels. It may also increase pain-free exercise time in patients with angina. However, because it speeds up heartbeat, doc- tors often advise patients with heart disease to avoid caffeinated beverages entirely. As a diuretic. Caffeine is a mild diuretic sometimes included in over-the-counter remedies for premenstrual tension or menstrual discomfort.

Adverse Effects Associated with This Food Stimulation of acid secretion in the stomach. Both regular and decaffeinated coffees increase the secretion of stomach acid, which suggests that the culprit is the oil in coffee, not its caffeine. Elevated blood levels of cholesterol and homocysteine. In the mid-1990s, several studies in the Netherlands and Norway suggested that drinking even moderate amounts of coffee (five cups a day or less) might raise blood levels of cholesterol and homocysteine (by-product of protein metabolism considered an independent risk factor for heart disease), thus increas- ing the risk of cardiovascular disease. Follow-up studies, however, showed the risk limited to drinking unfiltered coffees such as coffee made in a coffee press, or boiled coffees such as Greek, Turkish, or espresso coffee. The unfiltered coffees contain problematic amounts of cafestol and kahweol, two members of a chemical family called diterpenes, which are believed to affect cholesterol and homocysteine levels. Diterpenes are removed by filtering coffee, as in a drip-brew pot. Possible increased risk of miscarriage. Two studies released in 2008 arrived at different conclusions regarding a link between coffee consumption and an increased risk of miscar- riage. The first, at Kaiser Permanente (California), found a higher risk of miscarriage among women consuming even two eight-ounce cups of coffee a day. The second, at Mt. Sinai School of Medicine (New York), found no such link. However, although the authors of the Kaiser Permanente study described it as a “prospective study” (a study in which the research- ers report results that occur after the study begins), in fact nearly two-thirds of the women who suffered a miscarriage miscarried before the study began, thus confusing the results. Increased risk of heartburn /acid reflux. The natural oils in both regular and decaffeinated coffees loosen the lower esophageal sphincter (LES), a muscular valve between the esopha- gus and the stomach. When food is swallowed, the valve opens to let food into the stomach, then closes tightly to keep acidic stomach contents from refluxing (flowing backwards) into the esophagus. If the LES does not close efficiently, the stomach contents reflux and cause heartburn, a burning sensation. Repeated reflux is a risk factor for esophageal cancer. Masking of sleep disorders. Sleep deprivation is a serious problem associated not only with automobile accidents but also with health conditions such as depression and high blood pres- sure. People who rely on the caffeine in a morning cup of coffee to compensate for lack of sleep may put themselves at risk for these disorders. Withdrawal symptoms. Caffeine is a drug for which you develop a tolerance; the more often you use it, the more likely you are to require a larger dose to produce the same effects and the more likely you are to experience withdrawal symptoms (headache, irritation) if you stop using it. The symptoms of coffee-withdrawal can be relieved immediately by drinking a cup of coffee.

Food/Drug Interactions Drugs that make it harder to metabolize caffeine. Some medical drugs slow the body’s metabolism of caffeine, thus increasing its stimulating effect. The list of such drugs includes cimetidine (Tagamet), disulfiram (Antabuse), estrogens, fluoroquinolone antibiotics (e.g., ciprofloxacin, enoxacin, norfloxacin), fluconazole (Diflucan), fluvoxamine (Luvox), mexi- letine (Mexitil), riluzole (R ilutek), terbinafine (Lamisil), and verapamil (Calan). If you are taking one of these medicines, check with your doctor regarding your consumption of caf- feinated beverages. Drugs whose adverse effects increase due to consumption of large amounts of caffeine. This list includes such drugs as metaproterenol (Alupent), clozapine (Clozaril), ephedrine, epinephrine, monoamine oxidase inhibitors, phenylpropanolamine, and theophylline. In addition, suddenly decreasing your caffeine intake may increase blood levels of lithium, a drug used to control mood swings. If you are taking one of these medicines, check with your doctor regarding your consumption of caffeinated beverages. Allopurinol. Coffee and other beverages containing methylxanthine stimulants (caffeine, theophylline, and theobromine) reduce the effectiveness of the antigout drug allopurinol, which is designed to inhibit xanthines. Analgesics. Caffeine strengthens over-the-counter painkillers (acetaminophen, aspirin, and other nonsteroidal anti-inflammatories [NSAIDS] such as ibuprofen and naproxen). But it also makes it more likely that NSAIDS will irritate your stomach lining. Antibiotics. Coffee increases stomach acidity, which reduces the rate at which ampicillin, erythromycin, griseofulvin, penicillin, and tetracyclines are absorbed when they are taken by mouth. (There is no effect when the drugs are administered by injection.) Antiulcer medication. Coffee increases stomach acidity and reduces the effectiveness of nor- mal doses of cimetidine and other antiulcer medication. False-positive test for pheochromocytoma. Pheochromocytoma, a tumor of the adrenal glands, secretes adrenalin, which is converted to VM A (vanillylmandelic acid) by the body and excreted in the urine. Until recently, the test for this tumor measured the levels of VM A in the patient’s urine and coffee, which contains VM A, was eliminated from patients’ diets lest it elevate the level of VM A in the urine, producing a false-positive test result. Today, more finely drawn tests make this unnecessary. Iron supplements. Caffeine binds with iron to form insoluble compounds your body cannot absorb. Ideally, iron supplements and coffee should be taken at least two hours apart. Birth control pills. Using oral contraceptives appears to double the time it takes to eliminate caffeine from the body. Instead of five to six hours, the stimulation of one cup of coffee may last as long as 12 hours. Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyra- mine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. Caffeine is a substance similar to tyramine. If you consume excessive amounts of a caffeinated beverage such as coffee while you are taking an M AO inhibitor, the result may be a hypertensive crisis. Nonprescription drugs containing caffeine. The caffeine in coffee may add to the stimulant effects of the caffeine in over-the-counter cold remedies, diuretics, pain relievers, stimulants, and weight-control products containing caffeine. Some cold pills contain 30 mg caffeine, some pain relievers 130 mg, and some weight-control products as much as 280 mg caffeine. There are 110 –150 mg caffeine in a five-ounce cup of drip-brewed coffee. Sedatives. The caffeine in coffee may counteract the drowsiness caused by sedative drugs; this may be a boon to people who get sleepy when they take antihistamines. Coffee will not, however, “sober up” people who are experiencing the inebriating effects of alcoholic beverages. Theophylline. Caffeine relaxes the smooth muscle of the bronchi and may intensif y the effects (and/or increase the risk of side effects) of this antiasthmatic drug.... coffee

Apples

Nutritional Profile Energy value (calories per serving): Low Protein: Low Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: High Sodium: Low (fresh or dried fruit) High (dried fruit treated with sodium sulfur compounds) Major vitamin contribution: Vitamin C Major mineral contribution: Potassium

About the Nutrients in This Food Apples are a high-fiber fruit with insoluble cellulose and lignin in the peel and soluble pectins in the flesh. Their most important vitamin is vitamin C. One fresh apple, 2.5 inches in diameter, has 2.4 g dietary fiber and 4.6 mg vitamin C (6 percent of the R DA for a woman, 5 percent of the R DA for a man). The sour taste of all immature apples (and some varieties, even when ripe) comes from malic acid. As an apple ripens, the amount of malic acid declines and the apple becomes sweeter. Apple seeds contain amygdalin, a naturally occurring cyanide/sugar compound that degrades into hydrogen cyanide. While accidentally swal- lowing an apple seed once in a while is not a serious hazard for an adult, cases of human poisoning after eating apple seeds have been reported, and swallowing only a few seeds may be lethal for a child.

The Most Nutritious Way to Serve This Food Fresh and unpared, to take advantage of the fiber in the peel and preserve the vitamin C, which is destroyed by the heat of cooking.

Diets That May Restrict or Exclude This Food Antiflatulence diet (raw apples) Low-fiber diet

Buying This Food Look for: Apples that are firm and brightly colored: shiny red Macintosh, Rome, and red Delicious; clear green Granny Smith; golden yellow Delicious. Avoid: Bruised apples. When an apple is damaged the injured cells release polyphenoloxi- dase, an enzyme that hastens the oxidation of phenols in the apple, producing brownish pigments that darken the fruit. It’s easy to check loose apples; if you buy them packed in a plastic bag, turn the bag upside down and examine the fruit.

Storing This Food Store apples in the refrigerator. Cool storage keeps them from losing the natural moisture that makes them crisp. It also keeps them from turning brown inside, near the core, a phe- nomenon that occurs when apples are stored at warm temperatures. Apples can be stored in a cool, dark cabinet with plenty of circulating air. Check the apples from time to time. They store well, but the longer the storage, the greater the natural loss of moisture and the more likely the chance that even the crispest apple will begin to taste mealy.

Preparing This Food Don’t peel or slice an apple until you are ready to use it. When you cut into the apple, you tear its cells, releasing polyphenoloxidase, an enzyme that darkens the fruit. Acid inactivates polyphenoloxidase, so you can slow the browning (but not stop it completely) by dipping raw sliced and/or peeled apples into a solution of lemon juice and water or vinegar and water or by mixing them with citrus fruits in a fruit salad. Polyphenoloxidase also works more slowly in the cold, but storing peeled apples in the refrigerator is much less effective than immersing them in an acid bath.

What Happens When You Cook This Food When you cook an unpeeled apple, insoluble cellulose and lignin will hold the peel intact through all normal cooking. The flesh of the apple, though, will fall apart as the pectin in its cell walls dissolves and the water inside its cells swells, rupturing the cell walls and turning the apples into applesauce. Commercial bakers keep the apples in their apple pies firm by treating them with calcium; home bakers have to rely on careful timing. To prevent baked apples from melting into mush, core the apple and fill the center with sugar or raisins to absorb the moisture released as the apple cooks. Cutting away a circle of peel at the top will allow the fruit to swell without splitting the skin. Red apple skins are colored with red anthocyanin pigments. When an apple is cooked, the anthocyanins combine with sugars to form irreversible brownish compounds.

How Other Kinds of Processing Affect This Food Juice. Apple juice comes in two versions: “cloudy” (unfiltered) and “clear” (filtered). Cloudy apple juice is made simply by chopping or shredding apples and then pressing out and straining the juice. Clear apple juice is cloudy juice filtered to remove solid particles and then treated with enzymes to eliminate starches and the soluble fiber pectin. Since 2000, follow- ing several deaths attributed to unpasteurized apple juice contaminated with E. coli O157: H7, the FDA has required that all juices sold in the United States be pasteurized to inactivate harmful organisms such as bacteria and mold. Note: “Hard cider” is a mildly alcoholic bever- age created when natural enzyme action converts the sugars in apple juice to alcohol; “non- alcohol cider” is another name for plain apple juice. Drying. To keep apple slices from turning brown as they dry, apples may be treated with sulfur compounds that may cause serious allergic reactions in people allergic to sulfites.

Medical Uses and/or Benefits As an antidiarrheal. The pectin in apple is a natural antidiarrheal that helps solidif y stool. Shaved raw apple is sometimes used as a folk remedy for diarrhea, and purified pectin is an ingredient in many over-the-counter antidiarrheals. Lower cholesterol levels. Soluble fiber (pectin) may interfere with the absorption of dietary fats, including cholesterol. The exact mechanism by which this occurs is still unknown, but one theory is that the pectins in the apple may form a gel in your stomach that sops up fats and cholesterol, carrying them out of your body as waste. Potential anticarcinogenic effects. A report in the April 2008 issue of the journal Nutrition from a team of researchers at the Universit y of Kaiserslautern, in Germany, suggests that several natural chemicals in apples, including but yrate (produced naturally when the pectin in apples and apple juice is metabolized) reduce the risk of cancer of the colon by nourishing and protecting the mucosa (lining) of the colon.

Adverse Effects Associated with This Food Intestinal gas. For some children, drinking excess amounts of apple juice produces intestinal discomfort (gas or diarrhea) when bacteria living naturally in the stomach ferment the sugars in the juice. To reduce this problem, the American Academy of Pediatrics recommends that children ages one to six consume no more than four to six ounces of fruit juice a day; for children ages seven to 18, the recommended serving is eight to 12 ounces a day. Cyanide poisoning. See About the nutrients in this food. Sulfite allergies (dried apples). See How other kinds of processing affect this food.

Food/Drug Interactions Digoxin (Lanoxicaps, Lanoxin). Pectins may bind to the heart medication digoxin, so eating apples at the same time you take the drug may reduce the drug’s effectiveness.... apples

Arachis Hypogaea

Linn.

Family: Papilionaceae; Fabaceae

Habitat: Native to Brazil, but widely grown for its pods in southern India, Maharashtra and Gujarat.

English: Groundnut, Peanut, Monkeynut.

Ayurvedic: Mandapi, Tailamudga, Bhuumimudga.

Unani: Moongphali.

Siddha/Tamil: Nelakadalai, Verkadalai.

Action: Kernels—contain protease inhibitors. Peanut skin— haemostatic.

There is a haemostatic principle in the peanut flour, which is said to improve the condition of haemophiliacs. The protease inhibitor acts on the fib- rinolytic system, primarily as an an- tiplasmin. It is reported to form complexes not only with the enzymes, but also with the corresponding zymogens.

The peanut (red) skin contains bio- flavonoids, which possess vitamin- P activity; tannins; a lipoxidase and a protease inhibitor. Capric acid, obtained from the (red) skin, showed antifungal activity against Aspergillus niger.... arachis hypogaea

Arsenic

A metalloid with industrial use in glass, wood preservative, herbicide, semiconductor manufacture, and as an alloy additive. It may be a component in alternative or traditional remedies both intentionally and as a contaminant. Common in the environment and in food, especially seafood, arsenic is odourless and tasteless and highly toxic by ingestion, inhalation and skin contact. It binds to sulphydryl groups inhibiting the action of many enzymes (see ENZYME) and also disrupts oxidative phosphorylation by substituting for PHOSPHORUS. Clinical effects of acute poisoning range from severe gastrointestinal effects to renal impairment or failure characterised by OLIGURIA, HAEMATURIA, PROTEINURIA and renal tubular necrosis. SHOCK, COMA and CONVULSIONS are reported, as are JAUNDICE and peripheral NEUROPATHY. Chronic exposures are harder to diagnose as effects are non-speci?c: they include gastrointestinal disturbances, hyperpigmentation and HYPERKERATOSIS of skin, localised OEDEMA, ALOPECIA, neuropathy, PARAESTHESIA, HEPATOMEGALY and jaundice. Management is largely supportive, particularly ensuring adequate renal function. Concentrations of arsenic in urine and blood can be measured and therapy instituted if needed. Several CHELATING AGENTS are e?ective: these include DMPS (2, 3-dimercapto-1-propanesulphonate), penicillamine and dimercaprol; DMPS is now agent of choice.... arsenic

Berberis Aristata

DC.

Sub sp. ? B. asiatica Roxb. ex DC.

Substi. ? B. lycium Royle & other species.

Family: Berberidaceae.

Habitat: Northwestern Himalayas, Nilgiris, Kulu and Kumaon.

English: Indian Barberry.

Ayurvedic: Daaruharidraa, Daaru, Daarvi, Daarunishaa, Daarura- jani, Vrahitaphala, Valliphala, Sthirphala. Pushpaphala, Somakaa, Parjanyaa, Parjani, Kantkateri, Taarthya, Pachampachaa. Kaaliyaka is now equated with Pita Chandana (Coscinium fenestratum (Gaertn.) Colebr., Menispermaceae). Extract—Rasaanjana.

Unani: Daarhald. Rasaut (extract). Zarishk (fruit).

Siddha/Tamil: Marmanjal.

Action: Rasaut, Rasasranjana (extract)—bitter, cholagogue, antidiarrhoeal, stomachic, laxative, diaphoretic, antipyretic, antiseptic. Used externally in opthalmia,conjunctivitis, ulcers, sores, swollen gums. Root bark— anti-inflammatory, hypoglycaemic hypotensive, antiamoebic, anticoagulant, antibacterial. Bark— used in liver complaints, diarrhoea, dysentery, cholera, gastric disorders, enlargement of spleen and for regulating metabolism. Berries— antiscorbutic, laxative.

Berberine hydrochloride and sulphate help in the diagnosis of latent malaria by releasing the parasites into the blood stream.

Alkaloid berberine possesses antibacterial and anti-inflammatory activities. It is used as an intestinal antiseptic and bitter stomachic. It also exhibits antineoplastic properties. (Its synthetic derivative dihydroberberine is used in brain tumour.)

Berberine has been found to inhibit the activity of enzymes trypsin (32%) and chymotrypsin (60%) in in-vitro studies.

B. asiatica Roxb.ex Dc. is found in the Himalaya at 900-3,000 m, Assam and Bihar.

See B. vulgaris.

Dosage: Extract—1-3 g (CCRAS.); dried stem—5-10 ml decoction. (API Vol. II.)... berberis aristata

Diabetes Mellitus

Diabetes mellitus is a condition characterised by a raised concentration of glucose in the blood due to a de?ciency in the production and/or action of INSULIN, a pancreatic hormone made in special cells called the islet cells of Langerhans.

Insulin-dependent and non-insulindependent diabetes have a varied pathological pattern and are caused by the interaction of several genetic and environmental factors.

Insulin-dependent diabetes mellitus (IDDM) (juvenile-onset diabetes, type 1 diabetes) describes subjects with a severe de?ciency or absence of insulin production. Insulin therapy is essential to prevent KETOSIS – a disturbance of the body’s acid/base balance and an accumulation of ketones in the tissues. The onset is most commonly during childhood, but can occur at any age. Symptoms are acute and weight loss is common.

Non-insulin-dependent diabetes mellitus (NIDDM) (maturity-onset diabetes, type 2 diabetes) may be further sub-divided into obese and non-obese groups. This type usually occurs after the age of 40 years with an insidious onset. Subjects are often overweight and weight loss is uncommon. Ketosis rarely develops. Insulin production is reduced but not absent.

A new hormone has been identi?ed linking obesity to type 2 diabetes. Called resistin – because of its resistance to insulin – it was ?rst found in mice but has since been identi?ed in humans. Researchers in the United States believe that the hormone may, in part, explain how obesity predisposes people to diabetes. Their hypothesis is that a protein in the body’s fat cells triggers insulin resistance around the body. Other research suggests that type 2 diabetes may now be occurring in obese children; this could indicate that children should be eating a more-balanced diet and taking more exercise.

Diabetes associated with other conditions (a) Due to pancreatic disease – for example, chronic pancreatitis (see PANCREAS, DISORDERS OF); (b) secondary to drugs – for example, GLUCOCORTICOIDS (see PANCREAS, DISORDERS OF); (c) excess hormone production

– for example, growth hormone (ACROMEGALY); (d) insulin receptor abnormalities; (e) genetic syndromes (see GENETIC DISORDERS).

Gestational diabetes Diabetes occurring in pregnancy and resolving afterwards.

Aetiology Insulin-dependent diabetes occurs as a result of autoimmune destruction of beta cells within the PANCREAS. Genetic in?uences are important and individuals with certain HLA tissue types (HLA DR3 and HLA DR4) are more at risk; however, the risks associated with the HLA genes are small. If one parent has IDDM, the risk of a child developing IDDM by the age of 25 years is 1·5–2·5 per cent, and the risk of a sibling of an IDDM subject developing diabetes is about 3 per cent.

Non-insulin-dependent diabetes has no HLA association, but the genetic in?uences are much stronger. The risks of developing diabetes vary with di?erent races. Obesity, decreased exercise and ageing increase the risks of disease development. The risk of a sibling of a NIDDM subject developing NIDDM up to the age of 80 years is 30–40 per cent.

Diet Many NIDDM diabetics may be treated with diet alone. For those subjects who are overweight, weight loss is important, although often unsuccessful. A diet high in complex carbohydrate, high in ?bre, low in fat and aiming towards ideal body weight is prescribed. Subjects taking insulin need to eat at regular intervals in relation to their insulin regime and missing meals may result in hypoglycaemia, a lowering of the amount of glucose in the blood, which if untreated can be fatal (see below).

Oral hypoglycaemics are used in the treatment of non-insulin-dependent diabetes in addition to diet, when diet alone fails to control blood-sugar levels. (a) SULPHONYLUREAS act mainly by increasing the production of insulin;

(b) BIGUANIDES, of which only metformin is available, may be used alone or in addition to sulphonylureas. Metformin’s main actions are to lower the production of glucose by the liver and improve its uptake in the peripheral tissues.

Complications The risks of complications increase with duration of disease.

Diabetic hypoglycaemia occurs when amounts of glucose in the blood become low. This may occur in subjects taking sulphonylureas or insulin. Symptoms usually develop when the glucose concentration falls below 2·5 mmol/l. They may, however, occur at higher concentrations in subjects with persistent hyperglycaemia – an excess of glucose – and at lower levels in subjects with persistent hypo-glycaemia. Symptoms include confusion, hunger and sweating, with coma developing if blood-sugar concentrations remain low. Re?ned sugar followed by complex carbohydrate will return the glucose concentration to normal. If the subject is unable to swallow, glucagon may be given intramuscularly or glucose intravenously, followed by oral carbohydrate, once the subject is able to swallow.

Although it has been shown that careful control of the patient’s metabolism prevents late complications in the small blood vessels, the risk of hypoglycaemia is increased and patients need to be well motivated to keep to their dietary and treatment regime. This regime is also very expensive. All risk factors for the patient’s cardiovascular system – not simply controlling hyperglycaemia – may need to be reduced if late complications to the cardiovascular system are to be avoided.

Diabetes is one of the world’s most serious health problems. Recent projections suggest that the disorder will affect nearly 240 million individuals worldwide by 2010 – double its prevalence in 1994. The incidence of insulin-dependent diabetes is rising in young children; they will be liable to develop late complications.

Although there are complications associated with diabetes, many subjects live normal lives and survive to an old age. People with diabetes or their relatives can obtain advice from Diabetes UK (www.diabetes.org.uk).

Increased risks are present of (a) heart disease, (b) peripheral vascular disease, and (c) cerebrovascular disease.

Diabetic eye disease (a) retinopathy, (b) cataract. Regular examination of the fundus enables any abnormalities developing to be detected and treatment given when appropriate to preserve eyesight.

Nephropathy Subjects with diabetes may develop kidney damage which can result in renal failure.

Neuropathy (a) Symmetrical sensory polyneuropathy; damage to the sensory nerves that commonly presents with tingling, numbness of pain in the feet or hands. (b) Asymmetrical motor diabetic neuropathy, presenting as progressive weakness and wasting of the proximal muscles of legs. (c) Mononeuropathy; individual motor or sensory nerves may be affected. (d) Autonomic neuropathy, which affects the autonomic nervous system, has many presentations including IMPOTENCE, diarrhoea or constipation and postural HYPOTENSION.

Skin lesions There are several skin disorders associated with diabetes, including: (a) necrobiosis lipoidica diabeticorum, characterised by one or more yellow atrophic lesions on the legs;

(b) ulcers, which most commonly occur on the feet due to peripheral vascular disease, neuropathy and infection. Foot care is very important.

Diabetic ketoacidosis occurs when there is insu?cient insulin present to prevent KETONE production. This may occur before the diagnosis of IDDM or when insu?cient insulin is being given. The presence of large amounts of ketones in the urine indicates excess ketone production and treatment should be sought immediately. Coma and death may result if the condition is left untreated.

Symptoms Thirst, POLYURIA, GLYCOSURIA, weight loss despite eating, and recurrent infections (e.g. BALANITIS and infections of the VULVA) are the main symptoms.

However, subjects with non-insulindependent diabetes may have the disease for several years without symptoms, and diagnosis is often made incidentally or when presenting with a complication of the disease.

Treatment of diabetes aims to prevent symptoms, restore carbohydrate metabolism to as near normal as possible, and to minimise complications. Concentration of glucose, fructosamine and glycated haemoglobin in the blood are used to give an indication of blood-glucose control.

Insulin-dependent diabetes requires insulin for treatment. Non-insulin-dependent diabetes may be treated with diet, oral HYPOGLYCAEMIC AGENTS or insulin.

Insulin All insulin is injected – mainly by syringe but sometimes by insulin pump – because it is inactivated by gastrointestinal enzymes. There are three main types of insulin preparation: (a) short action (approximately six hours), with rapid onset; (b) intermediate action (approximately 12 hours); (c) long action, with slow onset and lasting for up to 36 hours. Human, porcine and bovine preparations are available. Much of the insulin now used is prepared by genetic engineering techniques from micro-organisms. There are many regimens of insulin treatment involving di?erent combinations of insulin; regimens vary depending on the requirements of the patients, most of whom administer the insulin themselves. Carbohydrate intake, energy expenditure and the presence of infection are important determinants of insulin requirements on a day-to-day basis.

A new treatment for diabetes, pioneered in Canada and entering its preliminary clinical trials in the UK, is the transplantation of islet cells of Langerhans from a healthy person into a patient with the disorder. If the transplantation is successful, the transplanted cells start producing insulin, thus reducing or eliminating the requirement for regular insulin injections. If successful the trials would be a signi?cant advance in the treatment of diabetes.

Scientists in Israel have developed a drug, Dia Pep 277, which stops the body’s immune system from destroying pancratic ? cells as happens in insulin-dependent diabetes. The drug, given by injection, o?ers the possibility of preventing type 1 diabetes in healthy people at genetic risk of developing the disorder, and of checking its progression in affected individuals whose ? cells are already perishing. Trials of the drug are in progress.... diabetes mellitus

Diastase

A mixture of enzymes obtained from malt. These enzymes have the property of converting starch into sugar. Diastase is used in the preparation of predigested starchy foods, and in the treatment of DYSPEPSIA, particularly that due to inability to digest starch adequately. It is also used for the conversion of starch to fermentable sugars in the brewing and fermentation industries.... diastase

Distilled Spirits

(Brandy, gin, rum, tequila, whiskey, vodka)

Nutritional Profile Energy value (calories per serving): Moderate to high Protein: None Fat: None Saturated fat: None Cholesterol: None Carbohydrates: None (except for cordials which contain added sugar) Fiber: None Sodium: Low Major vitamin contribution: None Major mineral contribution: Phosphorus

About the Nutrients in This Food Spirits are the clear liquids produced by distilling the fermented sugars of grains, fruit, or vegetables. The yeasts that metabolize these sugars and convert them into alcohol stop growing when the concentration of alcohol rises above 12–15 percent. In the United States, the proof of an alcoholic beverage is defined as twice its alcohol content by volume: a beverage with 20 percent alcohol by volume is 40 proof. This is high enough for most wines, but not high enough for most whiskies, gins, vodkas, rums, brandies, and tequilas. To reach the concentra- tion of alcohol required in these beverages, the fermented sugars are heated and distilled. Ethyl alcohol (the alcohol in beer, wine, and spirits) boils at a lower temperature than water. When the fermented sugars are heated, the ethyl alcohol escapes from the distillation vat and condenses in tubes leading from the vat to a collection vessel. The clear liquid that collects in this vessel is called distilled spirits or, more technically, grain neutral spirits. Gins, whiskies, cordials, and many vodkas are made with spirits American whiskeys (which include bourbon, rye, and distilled from grains. blended whiskeys) and Canadian, Irish, and Scotch whiskies are all made from spirits aged in wood barrels. They get their flavor from the grains and their color from the barrels. (Some whiskies are also colored with caramel.) Vodka is made from spirits distilled and filtered to remove all flavor. By law, vodkas made in America must be made with spirits distilled from grains. Imported vodkas may be made with spirits distilled either from grains or potatoes and may contain additional flavoring agents such as citric acid or pepper. Aquavit, for example, is essentially vodka flavored with caraway seeds. Gin is a clear spirit flavored with an infusion of juniper berries and other herbs (botanicals). Cordials (also called liqueurs) and schnapps are flavored spirits; most are sweetened with added sugar. Some cordials contain cream. Rum is made with spirits distilled from sugar cane (molasses). Tequila is made with spirits distilled from the blue agave plant. Brandies are made with spirits distilled from fruit. (Arma- gnac and cognac are distilled from fermented grapes, calvados and applejack from fermented apples, kirsch from fermented cherries, slivovitz from fermented plums.) Unless they contain added sugar or cream, spirits have no nutrients other than alcohol. Unlike food, which has to be metabolized before your body can use it for energy, alcohol can be absorbed into the blood-stream directly from the gastrointestinal tract. Ethyl alcohol provides 7 calories per gram.

The Most Nutritious Way to Serve This Food The USDA /Health and Human Services Dietary Guidelines for Americans defines one drink as 12 ounces of beer, five ounces of wine, or 1.25 ounces of distilled spirits, and “moderate drinking” as two drinks a day for a man, one drink a day for a woman.

Diets That May Restrict or Exclude This Food Bland diet Lactose-free diet (cream cordials made with cream or milk) Low-purine (antigout) diet

Buying This Food Look for: Tightly sealed bottles stored out of direct sunlight, whose energy might disrupt the structure of molecules in the beverage and alter its flavor. Choose spirits sold only by licensed dealers. Products sold in these stores are manufac- tured under the strict supervision of the federal government.

Storing This Food Store sealed or opened bottles of spirits in a cool, dark cabinet.

Preparing This Food All spirits except unflavored vodkas contain volatile molecules that give the beverage its characteristic taste and smell. Warming the liquid excites these molecules and intensifies the flavor and aroma, which is the reason we serve brandy in a round glass with a narrower top that captures the aromatic molecules as they rise toward the air when we warm the glass by holding it in our hands. Whiskies, too, though traditionally served with ice in America, will have a more intense flavor and aroma if served at room temperature.

What Happens When You Cook This Food The heat of cooking evaporates the alcohol in spirits but leaves the flavoring intact. Like other alcoholic beverages, spirits should be added to a recipe near the end of the cooking time to preserve the flavor while cooking away any alcohol bite. Alcohol is an acid. If you cook it in an aluminum or iron pot, it will combine with metal ions to form dark compounds that discolor the pot and the food you are cooking. Any recipe made with spirits should be prepared in an enameled, glass, or stainless-steel pot.

Medical Uses and/or Benefits Reduced risk of heart attack. Data from the American Cancer Society’s Cancer Prevention Study 1, a 12-year survey of more than 1 million Americans in 25 states, shows that men who take one drink a day have a 21 percent lower risk of heart attack and a 22 percent lower risk of stroke than men who do not drink at all. Women who have up to one drink a day also reduce their risk of heart attack. Numerous later studies have confirmed these findings. Lower cholesterol levels. Beverage alcohol decreases the body’s production and storage of low density lipoproteins (LDLs), the protein and fat particles that carry cholesterol into your arteries. As a result, people who drink moderately tend to have lower cholesterol levels and higher levels of high density lipoproteins (HDLs), the fat and protein particles that carry cholesterol out of the body. Numerous later studies have confirmed these findings. Lower risk of stroke. In January 1999, the results of a 677-person study published by researchers at New York Presbyterian Hospital-Columbia University showed that moderate alcohol consumption reduces the risk of stroke due to a blood clot in the brain among older people (average age: 70). How alcohol prevents stroke is still unknown, but it is clear that moderate use is a key. Heavy drinkers (those who consume more than seven drinks a day) have a higher risk of stroke. People who once drank heavily, but cut their consumption to moderate levels, reduce their risk of stroke. Stimulating the appetite. Alcoholic beverages stimulate the production of saliva and the gastric acids that cause the stomach contractions we call hunger pangs. Moderate amounts of alcoholic beverages, which may help stimulate appetite, are often prescribed for geriatric patients, convalescents, and people who do not have ulcers or other chronic gastric problems that might be exacerbated by the alcohol. Dilation of blood vessels. Alcoholic beverages dilate the tiny blood vessels just under the skin, bringing blood up to the surface. That’s why moderate amounts of alcoholic beverages (0.2–1 gram per kilogram of body weight, or two ounces of whiskey for a 150-pound adult) temporarily warm the drinker. But the warm blood that flows up to the surface of the skin will cool down there, making you even colder when it circulates back into the center of your body. Then an alcohol flush will make you perspire, so you lose more heat. Excessive amounts of beverage alcohol may depress the mechanism that regulates body temperature.

Adverse Effects Associated with This Food Alcoholism. Alcoholism is an addiction disease, the inability to control one’s alcohol consumption. It is a potentially life-threatening condition, with a higher risk of death by accident, suicide, malnutrition, or acute alcohol poisoning, a toxic reaction that kills by para- lyzing body organs, including the heart. Fetal alcohol syndrome. Fetal alcohol syndrome is a specific pattern of birth defects—low birth weight, heart defects, facial malformations, learning disabilities, and mental retarda- tion—first recognized in a study of babies born to alcoholic women who consumed more than six drinks a day while pregnant. Subsequent research has found a consistent pattern of milder defects in babies born to women who drink three to four drinks a day or five drinks on any one occasion while pregnant. To date there is no evidence of a consistent pattern of birth defects in babies born to women who consume less than one drink a day while preg- nant, but two studies at Columbia University have suggested that as few as two drinks a week while pregnant may raise a woman’s risk of miscarriage. (One drink is 12 ounces of beer, five ounces of wine, or 1.25 ounces of distilled spirits.) Increased risk of breast cancer. In 2008, scientists at the National Cancer Institute released data from a seven-year survey of more than 100,000 postmenopausal women showing that even moderate drinking (one to two drinks a day) may increase by 32 percent a woman’s risk of developing estrogen-receptor positive (ER+) and progesterone-receptor positive (PR+) breast cancer, tumors whose growth is stimulated by hormones. No such link was found between consuming alcohol and the risk of developing ER-/PR- tumors (not fueled by hor- mones). The finding applies to all types of alcohol: beer, wine, and distilled spirits. Increased risk of oral cancer (cancer of the mouth and throat). Numerous studies confirm the A merican Cancer Societ y’s warn ing that men and women who consume more than t wo drinks a day are at higher risk of oral cancer than are nondrinkers or people who drink less. Increased risk of cancer of the colon and rectum. In the mid-1990s, studies at the University of Oklahoma suggested that men who drink more than five beers a day are at increased risk of rectal cancer. Later studies suggested that men and women who are heavy beer or spirits drinkers (but not those who are heavy wine drinkers) have a higher risk of colorectal cancers. Further studies are required to confirm these findings. Malnutrition. While moderate alcohol consumption stimulates appetite, alcohol abuses depresses it. In addition, an alcoholic may drink instead of eating. When an alcoholic does eat, excess alcohol in his/her body prevents absorption of nutrients and reduces the ability to synthesize new tissue. Hangover. Alcohol is absorbed from the stomach and small intestine and carried by the bloodstream to the liver, where it is oxidized to acetaldehyde by alcohol dehydrogenase (ADH), the enzyme our bodies use every day to metabolize the alcohol we produce when we digest carbohydrates. The acetaldehyde is converted to acetyl coenzyme A and either eliminated from the body or used in the synthesis of cholesterol, fatty acids, and body tis- sues. Although individuals vary widely in their capacity to metabolize alcohol, an adult of average size can metabolize the alcohol in four ounces (120 ml) whiskey in approximately five to six hours. If he or she drinks more than that, the amount of alcohol in the body will exceed the available supply of ADH. The surplus, unmetabolized alcohol will pile up in the bloodstream, interfering with the liver’s metabolic functions. Since alcohol decreases the reabsorption of water from the kidneys and may inhibit the secretion of an antidiuretic hormone, the drinker will begin to urinate copiously, losing magnesium, calcium, and zinc but retaining uric acid, which is irritating. The level of lactic acid in the body will increase, making him or her feel tired and out of sorts; the acid-base balance will be out of kilter; the blood vessels in the head will swell and throb; and the stomach, its lining irritated by the alcohol, will ache. The ultimate result is a hangover whose symptoms will disappear only when enough time has passed to allow the body to marshal the ADH needed to metabolize the extra alcohol in the person’s blood. Changes in body temperature. Alcohol dilates capillaries, tiny blood vessels just under the skin, producing a “flush” that temporarily warms the drinker. But drinking is not an effective way to stay warm in cold weather. Warm blood flowing up from the body core to the surface capillaries is quickly chilled, making you even colder when it circulates back into your organs. In addition, an alcohol flush triggers perspiration, further cooling your skin. Finally, very large amounts of alcohol may actually depress the mechanism that regulates body temperature. Impotence. Excessive drinking decreases libido (sexual desire) and interferes with the ability to achieve or sustain an erection. Migraine headache. Some alcoholic beverages contain chemicals that inhibit PST, an enzyme that breaks down certain alcohols in spirits so that they can be eliminated from the body. If they are not broken down by PST, these alcohols will build up in the bloodstream and may trigger a migraine headache. Gin and vodka appear to be the distilled spirits least likely to trigger headaches, brandy the most likely.

Food/Drug Interactions Acetaminophen (Tylenol, etc.). FDA recommends that people who regularly have three or more drinks a day consult a doctor before using acetaminophen. The alcohol/acetaminophen combination may cause liver failure. Anti-alcohol abuse drugs (disulfiram [Antabuse]). Taken concurrently with alcohol, the anti- alcoholism drug disulfiram can cause flushing, nausea, a drop in blood pressure, breathing difficulty, and confusion. The severity of the symptoms, which may var y among individu- als, generally depends on the amount of alcohol consumed and the amount of disulfiram in the body. Anticoagulants. Alcohol slows the body’s metabolism of anticoagulants (blood thinners), intensif ying the effect of the drugs and increasing the risk of side effects such as spontane- ous nosebleeds. Antidepressants. Alcohol may strengthen the sedative effects of antidepressants. Aspirin, ibuprofen, ketoprofen, naproxen and nonsteroidal anti-inflammatory drugs. Like alco- hol, these analgesics irritate the lining of the stomach and may cause gastric bleeding. Com- bining the two intensifies the effect. Insulin and oral hypoglycemics. Alcohol lowers blood sugar and interferes with the metabo- lism of oral antidiabetics; the combination may cause severe hypoglycemia. Sedatives and other central nervous system depressants (tranquilizers, sleeping pills, antide- pressants, sinus and cold remedies, analgesics, and medication for motion sickness). Alcohol intensifies the sedative effects of these medications and, depending on the dose, may cause drowsiness, sedation, respiratory depression, coma, or death. MAO inhibitors. Monoamine oxidase (M AO) inhibitors are drugs used as antidepressants or antihypertensives. They inhibit the action of natural enzymes that break down tyramine, a substance formed naturally when proteins are metabolized. Tyramine is a pressor amine, a chemical that constricts blood vessel and raises blood pressure. If you eat a food that contains tyramine while you are taking an M AO inhibitor, the pressor amine cannot be eliminated from your body and the result may be a hypertensive crisis (sustained elevated blood pressure). Brandy, a distilled spirit made from wine (which is fermented) contains tyramine. All other distilled spirits may be excluded from your diet when you are taking an M AO inhibitor because the spirits and the drug, which are both sedatives, may be hazard- ous in combination.... distilled spirits

Endocrine Glands

Organs whose function it is to secrete into the blood or lymph, substances known as HORMONES. These play an important part in general changes to or the activities of other organs at a distance. Various diseases arise as the result of defects or excess in the internal secretions of the di?erent glands. The chief endocrine glands are:

Adrenal glands These two glands, also known as suprarenal glands, lie immediately above the kidneys. The central or medullary portion of the glands forms the secretions known as ADRENALINE (or epinephrine) and NORADRENALINE. Adrenaline acts upon structures innervated by sympathetic nerves. Brie?y, the blood vessels of the skin and of the abdominal viscera (except the intestines) are constricted, and at the same time the arteries of the muscles and the coronary arteries are dilated; systolic blood pressure rises; blood sugar increases; the metabolic rate rises; muscle fatigue is diminished. The super?cial or cortical part of the glands produces steroid-based substances such as aldosterone, cortisone, hydrocortisone, and deoxycortone acetate, for the maintenance of life. It is the absence of these substances, due to atrophy or destruction of the suprarenal cortex, that is responsible for the condition known as ADDISON’S DISEASE. (See CORTICOSTEROIDS.)

Ovaries and testicles The ovary (see OVARIES) secretes at least two hormones – known, respectively, as oestradiol (follicular hormone) and progesterone (corpus luteum hormone). Oestradiol develops (under the stimulus of the anterior pituitary lobe – see PITUITARY GLAND below, and under separate entry) each time an ovum in the ovary becomes mature, and causes extensive proliferation of the ENDOMETRIUM lining the UTERUS, a stage ending with shedding of the ovum about 14 days before the onset of MENSTRUATION. The corpus luteum, which then forms, secretes both progesterone and oestradiol. Progesterone brings about great activity of the glands in the endometrium. The uterus is now ready to receive the ovum if it is fertilised. If fertilisation does not occur, the corpus luteum degenerates, the hormones cease acting, and menstruation takes place.

The hormone secreted by the testicles (see TESTICLE) is known as TESTOSTERONE. It is responsible for the growth of the male secondary sex characteristics.

Pancreas This gland is situated in the upper part of the abdomen and, in addition to the digestive enzymes, it produces INSULIN within specialised cells (islets of Langerhans). This controls carbohydrate metabolism; faulty or absent insulin production causes DIABETES MELLITUS.

Parathyroid glands These are four minute glands lying at the side of, or behind, the thyroid (see below). They have a certain e?ect in controlling the absorption of calcium salts by the bones and other tissues. When their secretion is defective, TETANY occurs.

Pituitary gland This gland is attached to the base of the brain and rests in a hollow on the base of the skull. It is the most important of all endocrine glands and consists of two embryologically and functionally distinct lobes.

The function of the anterior lobe depends on the secretion by the HYPOTHALAMUS of certain ‘neuro-hormones’ which control the secretion of the pituitary trophic hormones. The hypothalamic centres involved in the control of speci?c pituitary hormones appear to be anatomically separate. Through the pituitary trophic hormones the activity of the thyroid, adrenal cortex and the sex glands is controlled. The anterior pituitary and the target glands are linked through a feedback control cycle. The liberation of trophic hormones is inhibited by a rising concentration of the circulating hormone of the target gland, and stimulated by a fall in its concentration. Six trophic (polypeptide) hormones are formed by the anterior pituitary. Growth hormone (GH) and prolactin are simple proteins formed in the acidophil cells. Follicle-stimulating hormone (FSH), luteinising hormone (LH) and thyroid-stimulating hormone (TSH) are glycoproteins formed in the basophil cells. Adrenocorticotrophic hormone (ACTH), although a polypeptide, is derived from basophil cells.

The posterior pituitary lobe, or neurohypophysis, is closely connected with the hypothalamus by the hypothalamic-hypophyseal tracts. It is concerned with the production or storage of OXYTOCIN and vasopressin (the antidiuretic hormone).

PITUITARY HORMONES Growth hormone, gonadotrophic hormone, adrenocorticotrophic hormone and thyrotrophic hormones can be assayed in blood or urine by radio-immunoassay techniques. Growth hormone extracted from human pituitary glands obtained at autopsy was available for clinical use until 1985, when it was withdrawn as it is believed to carry the virus responsible for CREUTZFELDT-JAKOB DISEASE (COD). However, growth hormone produced by DNA recombinant techniques is now available as somatropin. Synthetic growth hormone is used to treat de?ciency of the natural hormone in children and adults, TURNER’S SYNDROME and chronic renal insu?ciency in children.

Human pituitary gonadotrophins are readily obtained from post-menopausal urine. Commercial extracts from this source are available and are e?ective for treatment of infertility due to gonadotrophin insu?ciency.

The adrenocorticotrophic hormone is extracted from animal pituitary glands and has been available therapeutically for many years. It is used as a test of adrenal function, and, under certain circumstances, in conditions for which corticosteroid therapy is indicated (see CORTICOSTEROIDS). The pharmacologically active polypeptide of ACTH has been synthesised and is called tetracosactrin. Thyrotrophic hormone is also available but it has no therapeutic application.

HYPOTHALAMIC RELEASING HORMONES which affect the release of each of the six anterior pituitary hormones have been identi?ed. Their blood levels are only one-thousandth of those of the pituitary trophic hormones. The release of thyrotrophin, adrenocorticotrophin, growth hormone, follicle-stimulating hormone and luteinising hormone is stimulated, while release of prolactin is inhibited. The structure of the releasing hormones for TSH, FSH-LH, GH and, most recently, ACTH is known and they have all been synthesised. Thyrotrophin-releasing hormone (TRH) is used as a diagnostic test of thyroid function but it has no therapeutic application. FSH-LH-releasing hormone provides a useful diagnostic test of gonadotrophin reserve in patients with pituitary disease, and is now used in the treatment of infertility and AMENORRHOEA in patients with functional hypothalamic disturbance. As this is the most common variety of secondary amenorrhoea, the potential use is great. Most cases of congenital de?ciency of GH, FSH, LH and ACTH are due to defects in the hypothalamic production of releasing hormone and are not a primary pituitary defect, so that the therapeutic implication of this synthesised group of releasing hormones is considerable.

GALACTORRHOEA is frequently due to a microadenoma (see ADENOMA) of the pituitary. DOPAMINE is the prolactin-release inhibiting hormone. Its duration of action is short so its therapeutic value is limited. However, BROMOCRIPTINE is a dopamine agonist with a more prolonged action and is e?ective treatment for galactorrhoea.

Thyroid gland The functions of the thyroid gland are controlled by the pituitary gland (see above) and the hypothalamus, situated in the brain. The thyroid, situated in the front of the neck below the LARYNX, helps to regulate the body’s METABOLISM. It comprises two lobes each side of the TRACHEA joined by an isthmus. Two types of secretory cells in the gland – follicular cells (the majority) and parafollicular cells – secrete, respectively, the iodine-containing hormones THYROXINE (T4) and TRI-IODOTHYRONINE (T3), and the hormone CALCITONIN. T3 and T4 help control metabolism and calcitonin, in conjunction with parathyroid hormone (see above), regulates the body’s calcium balance. De?ciencies in thyroid function produce HYPOTHYROIDISM and, in children, retarded development. Excess thyroid activity causes thyrotoxicosis. (See THYROID GLAND, DISEASES OF.)... endocrine glands

Fish

See also Shellfish, Squid.

Nutritional Profile Energy value (calories per serving): Moderate Protein: High Fat: Low to moderate Saturated fat: Low to moderate Cholesterol: Moderate Carbohydrates: Low Fiber: None Sodium: Low (fresh fish) High (some canned or salted fish) Major vitamin contribution: Vitamin A, vitamin D Major mineral contribution: Iodine, selenium, phosphorus, potassium, iron, calcium

About the Nutrients in This Food Like meat, poultry, milk, and eggs, fish are an excellent source of high- quality proteins with sufficient amount of all the essential amino acids. While some fish have as much or more fat per serving than some meats, the fat content of fish is always lower in saturated fat and higher in unsaturated fats. For example, 100 g/3.5 ounce cooked pink salmon (a fatty fish) has 4.4 g total fat, but only 0.7 g saturated fat, 1.2 g monounsaturated fat, and 1.7 g polyunsaturated fat; 100 g/3.5 ounce lean top sirloin has four grams fat but twice as much saturated fat (1.5 g), plus 1.6 g monounsatu- rated fat and only 0.2 g polyunsaturated fat. Omega-3 Fatty Acid Content of Various Fish (Continued) Fish  Grams/ounce Rainbow trout  0.30 Lake whitefish  0.25 Source: “Food for t he Heart,” American Health, April 1985. Fish oils are one of the few natural food sources of vitamin D. Salmon also has vita- min A derived from carotenoid pigments in the plants eaten by the fish. The soft bones in some canned salmon and sardines are an excellent source of calcium. CAUTION: do not eat the bones in r aw or cook ed fish. the only bones consider ed edible ar e those in the canned products.

The Most Nutritious Way to Serve This Food Cooked, to kill parasites and potentially pathological microorganisms living in raw fish. Broiled, to liquify fat and eliminate the fat-soluble environmental contaminants found in some freshwater fish. With the soft, mashed, calcium-rich bones (in canned salmon and canned sardines).

Diets That May Restrict or Exclude This Food Low-purine (antigout) diet Low-sodium diet (canned, salted, or smoked fish)

Buying This Food Look for: Fresh-smelling whole fish with shiny skin; reddish pink, moist gills; and clear, bulging eyes. The flesh should spring back when you press it lightly. Choose fish fillets that look moist, not dry. Choose tightly sealed, solidly frozen packages of frozen fish. In 1998, the FDA /National Center for Toxicological Research released for testing an inexpensive indicator called “Fresh Tag.” The indicator, to be packed with seafood, changes color if the product spoils. Avoid: Fresh whole fish whose eyes have sunk into the head (a clear sign of aging); fillets that look dry; and packages of frozen fish that are stained (whatever leaked on the package may have seeped through onto the fish) or are coated with ice crystals (the package may have defrosted and been refrozen).

Storing This Food Remove fish from plastic wrap as soon as you get it home. Plastic keeps out air, encouraging the growth of bacteria that make the fish smell bad. If the fish smells bad when you open the package, throw it out. Refrigerate all fresh and smoked fish immediately. Fish spoils quickly because it has a high proportion of polyunsaturated fatty acids (which pick up oxygen much more easily than saturated or monounsaturated fatty acids). Refrigeration also slows the action of microorgan- isms on the surface of the fish that convert proteins and other substances to mucopolysac- charides, leaving a slimy film on the fish. Keep fish frozen until you are ready to use it. Store canned fish in a cool cabinet or in a refrigerator (but not the freezer). The cooler the temperature, the longer the shelf life.

Preparing This Food Fresh fish. Rub the fish with lemon juice, then rinse it under cold running water. The lemon juice (an acid) will convert the nitrogen compounds that make fish smell “fishy” to compounds that break apart easily and can be rinsed off the fish with cool running water. R insing your hands in lemon juice and water will get rid of the fishy smell after you have been preparing fresh fish. Frozen fish. Defrost plain frozen fish in the refrigerator or under cold running water. Pre- pared frozen fish dishes should not be thawed before you cook them since defrosting will make the sauce or coating soggy. Salted dried fish. Salted dried fish should be soaked to remove the salt. How long you have to soak the fish depends on how much salt was added in processing. A reasonable average for salt cod, mackerel, haddock (finnan haddie), or herring is three to six hours, with two or three changes of water. When you are done, clean all utensils thoroughly with hot soap and hot water. Wash your cutting board, wood or plastic, with hot water, soap, and a bleach-and-water solution. For ultimate safety in preventing the transfer of microorganisms from the raw fish to other foods, keep one cutting board exclusively for raw fish, meats, and poultry, and a second one for everything else. Finally, don’t forget to wash your hands.

What Happens When You Cook This Food Heat changes the structure of proteins. It denatures the protein molecules so that they break apart into smaller fragments or change shape or clump together. These changes force moisture out of the tissues so that the fish turns opaque. The longer you cook fish, the more moisture it will lose. Cooked fish flakes because the connective tissue in fish “melts” at a relatively low temperature. Heating fish thoroughly destroys parasites and microorganisms that live in raw fish, making the fish safer to eat.

How Other Kinds of Processing Affect This Food Marinating. Like heat, acids coagulate the proteins in fish, squeezing out moisture. Fish marinated in citrus juices and other acids such as vinegar or wine has a firm texture and looks cooked, but the acid bath may not inactivate parasites in the fish. Canning. Fish is naturally low in sodium, but can ned fish often contains enough added salt to make it a high-sodium food. A 3.5-ounce ser ving of baked, fresh red salmon, for example, has 55 mg sodium, while an equal ser ving of regular can ned salmon has 443 mg. If the fish is can ned in oil it is also much higher in calories than fresh fish. Freezing. When fish is frozen, ice cr ystals form in the flesh and tear its cells so that mois- ture leaks out when the fish is defrosted. Commercial flash-freezing offers some protec- tion by freezing the fish so fast that the ice cr ystals stay small and do less damage, but all defrosted fish tastes drier and less palatable than fresh fish. Freezing slows but does not stop the oxidation of fats that causes fish to deteriorate. Curing. Fish can be cured (preser ved) by smoking, dr ying, salting, or pickling, all of which coagulate the muscle tissue and prevent microorganisms from growing. Each method has its own particular drawbacks. Smoking adds potentially carcinogenic chemicals. Dr ying reduces the water content, concentrates the solids and nutrients, increases the calories per ounce, and raises the amount of sodium.

Medical Uses and/or Benefits Protection against cardiovascular disease. The most important fats in fish are the poly- unsaturated acids k nown as omega-3s. These fatt y acids appear to work their way into heart cells where they seem to help stabilize the heart muscle and prevent potentially fatal arrhythmia (irregular heartbeat). A mong 85,000 women in the long-run n ing Nurses’ Health Study, those who ate fatt y fish at least five times a week were nearly 50 percent less likely to die from heart disease than those who ate fish less frequently. Similar results appeared in men in the equally long-run n ing Physicians’ Health Study. Some studies suggest that people may get similar benefits from omega-3 capsules. Researchers at the Consorzio Mario Negri Sud in Santa Maria Imbaro ( Italy) say that men given a one-gram fish oil capsule once a day have a risk of sudden death 42 percent lower than men given placebos ( “look-alike” pills with no fish oil). However, most nutrition scientists recom- mend food over supplements. Omega-3 Content of Various Food Fish Fish* (3 oz.)  Omega-3 (grams) Salmon, Atlantic  1.8 Anchovy, canned* 1.7 Mackerel, Pacific 1.6 Salmon, pink, canned* 1.4 Sardine, Pacific, canned* 1.4 Trout, rainbow  1.0 Tuna, white, canned* 0.7 Mussels  0.7 * cooked, wit hout sauce * drained Source: Nat ional Fisheries Inst itute; USDA Nut rient Data Laborator y. Nat ional Nut ri- ent Database for Standard Reference. Available online. UR L : http://w w w.nal.usda. gov/fnic/foodcomp/search /.

Adverse Effects Associated with This Food Allergic reaction. According to the Merck Manual, fish is one of the 12 foods most likely to trigger classic food allergy symptoms: hives, swelling of the lips and eyes, and upset stom- ach. The others are berries (blackberries, blueberries, raspberries, strawberries), chocolate, corn, eggs, legumes (green peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see wheat cer ea ls). NOTE : Canned tuna products may contain sulfites in vegetable proteins used to enhance the tuna’s flavor. People sensitive to sulfites may suf- fer serious allergic reactions, including potentially fatal anaphylactic shock, if they eat tuna containing sulfites. In 1997, tuna manufacturers agreed to put warning labels on products with sulfites. Environmental contaminants. Some fish are contaminated with methylmercury, a compound produced by bacteria that chemically alters naturally occurring mercury (a metal found in rock and soil) or mercury released into water through industrial pollution. The methylmer- cury is absorbed by small fish, which are eaten by larger fish, which are then eaten by human beings. The larger the fish and the longer it lives the more methylmercury it absorbs. The measurement used to describe the amount of methylmercury in fish is ppm (parts per mil- lion). Newly-popular tilapia, a small fish, has an average 0.01 ppm, while shark, a big fish, may have up to 4.54 ppm, 450 times as much. That is a relatively small amount of methylmercur y; it will soon make its way harmlessly out of the body. But even small amounts may be hazardous during pregnancy because methylmercur y targets the developing fetal ner vous system. Repeated studies have shown that women who eat lots of high-mercur y fish while pregnant are more likely to deliver babies with developmental problems. As a result, the FDA and the Environ men- tal Protection Agency have now warned that women who may become pregnant, who are pregnant, or who are nursing should avoid shark, swordfish, king mackerel, and tilefish, the fish most likely to contain large amounts of methylmercur y. The same prohibition applies to ver y young children; although there are no studies of newborns and babies, the young brain continues to develop after birth and the logic is that the prohibition during pregnancy should extend into early life. That does not mean no fish at all should be eaten during pregnancy. In fact, a 2003 report in the Journal of Epidemiology and Community Health of data from an 11,585-woman study at the University of Bristol (England) shows that women who don’t eat any fish while pregnant are nearly 40 percent more likely to deliver low birth-weight infants than are women who eat about an ounce of fish a day, the equivalent of 1/3 of a small can of tuna. One theory is that omega-3 fatty acids in the fish may increase the flow of nutrient-rich blood through the placenta to the fetus. University of Southern California researchers say that omega-3s may also protect some children from asthma. Their study found that children born to asthmatic mothers who ate oily fish such as salmon at least once a month while pregnant were less likely to develop asthma before age five than children whose asthmatic pregnant mothers never ate oily fish. The following table lists the estimated levels of mercury in common food fish. For the complete list of mercury levels in fish, click onto www.cfsan.fda.gov/~frf/sea-mehg.html. Mercury Levels in Common Food Fish Low levels (0.01– 0.12 ppm* average) Anchovies, butterfish, catfish, clams, cod, crab (blue, king, snow), crawfish, croaker (Atlantic), flounder, haddock, hake, herring, lobster (spiny/Atlantic) mackerel, mul- let, ocean perch, oysters, pollock, salmon (canned/fresh frozen), sardines, scallops, shad (American), shrimp, sole, squid, tilapia, trout (freshwater), tuna (canned, light), whitefish, whiting Mid levels (0.14 – 0.54 ppm* average) Bass (salt water), bluefish, carp, croaker ( Pacific), freshwater perch, grouper, halibut, lobster (Northern A merican), mackerel (Spanish), marlin, monkfish, orange roughy, skate, snapper, tilefish (Atlantic), tuna (can ned albacore, fresh/frozen), weakfish/ sea trout High levels (0.73 –1.45 ppm* average) King mackerel, shark, swordfish, tilefish * ppm = parts per million, i.e. parts of mercur y to 1,000,000 parts fish Source: U.S. Food and Drug Administ rat ion, Center for Food Safet y and Applied Nut rit ion, “Mercur y Levels in Commercial Fish and Shellfish.” Available online. UR L : w w w.cfsan.fda. gov/~frf/sea-mehg.ht ml. Parasitical, viral, and bacterial infections. Like raw meat, raw fish may carry various pathogens, including fish tapeworm and flukes in freshwater fish and Salmonella or other microorganisms left on the fish by infected foodhandlers. Cooking the fish destroys these organisms. Scombroid poisoning. Bacterial decomposition that occurs after fish is caught produces a his- taminelike toxin in the flesh of mackerel, tuna, bonito, and albacore. This toxin may trigger a number of symptoms, including a flushed face immediately after you eat it. The other signs of scombroid poisoning—nausea, vomiting, stomach pain, and hives—show up a few minutes later. The symptoms usually last 24 hours or less.

Food/Drug Interactions Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyramine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. If you eat a food such as pickled herring, which is high in tyramine, while you are taking an M AO inhibitor, your body may not be able to eliminate the tyramine and the result may be a hypertensive crisis.... fish

Game Meat

(Bison, rabbit, venison)

Nutritional Profile Energy value (calories per serving): Moderate Protein: High Fat: Low Saturated fat: High Cholesterol: Moderate Carbohydrates: None Fiber: None Sodium: Low Major vitamin contribution: B vitamins Major mineral contribution: Iron, zinc

About the Nutrients in This Food Like other animal foods, game meat has high-quality proteins with suf- ficient amounts of all the essential amino acids. Some game meat has less fat, saturated fat, and cholesterol than beef. All game meat is an excellent source of B vitamins, plus heme iron, the form of iron most easily absorbed by your body, and zinc. For example, one four-ounce serving of roast bison has 28 g protein, 2.7 g fat (1.04 g saturated fat), 93.7 mg cholesterol, 3.88 mg iron (25.8 percent of the R DA for a woman of childbearing age), and 4.1 mg zinc (27 percent of the R DA for a man). The Nutrients in Roasted Game Meat (4-ounce serving)

The Most Nutritious Way to Serve This Food With a food rich in vitamin C. Vitamin C increases the absorption of iron.

Diets That May Restrict or Exclude This Food Low-protein diet (for kidney disease)

Buying This Food In American markets, game meats are usually sold frozen. Choose a package with no leaks or stains to suggest previous defrosting.

Storing This Food Keep frozen game meat well wrapped in the freezer until you are ready to use it. The packaging protects the meat from oxygen that can change its pigments from reddish to brown. Freezing prolongs the freshness of the meat by slowing the natural multiplication of bacteria that digest proteins and other substances on the surface, converting them to a slimy film. The bacteria also change the meat’s sulfur-containing amino acids methionine and cystine into smelly chemicals called mercaptans. When the mercaptans combine with myoglobin, they produce the greenish pigment that gives spoiled meat its characteristic unpleasant appearance. Large cuts of game meat can be safely frozen, at 0°F, for six months to a year.

Preparing This Food Defrost the meat in the refrigerator to protect it from spoilage. Trim the meat to dispose of all visible fat, thus reducing the amount of fat and cholesterol in each serving. When you are done, clean all utensils thoroughly with hot soap and hot water. Wash your cutting board, wood or plastic, with hot water, soap, and a bleach-and-water solution. For ultimate safety in preventing the transfer of microorganisms from the raw meat to other foods, keep one cutting board exclusively for raw meats, fish, and poultry, and a second one for everything else. Finally, don’t forget to wash your hands.

What Happens When You Cook This Food Cooking changes the way meat looks and tastes, alters its nutritional value, makes it safer, and extends its shelf life. Browning meat before you cook it does not “seal in the juices,” but it does change the flavor by caramelizing proteins and sugars on the surface. Because meat’s only sugars are the Game Meat  

63 small amounts of glycogen in muscle tissue, we add sugars in marinades or basting liquids that may also contain acids (vinegar, lemon juice, wine) to break down muscle fibers and tenderize the meat. (NOTE : Browning has one minor nutritional drawback. It breaks amino acids on the surface of the meat into smaller compounds that are no longer useful proteins.) When meat is heated, it loses water and shrinks. Its pigments, which combine with oxygen, are denatured (broken into fragments) by the heat. They turn brown, the natural color of well-done meat. At the same time, the fats in the meat are oxidized, a reaction that produces a characteristic warmed-over flavor when the cooked meat is refrigerated and then reheated. Cooking and storing the meat under a blanket of antioxidants—catsup or a gravy made of tomatoes, peppers and other vitamin-C rich vegetables—reduces fat oxidation and lessens the warmed-over flavor. Meat reheated in a microwave oven is also less likely to taste warmed-over.

How Other Kinds of Processing Affect This Food Aging. Hanging fresh meat exposed to air in a cold room evaporates moisture and shrinks the meat slightly. At the same time, bacterial action on the surface of the meat breaks down proteins, producing an “aged” flavor. (See below, Food/drug interactions.) Curing. Salt-curing preserves meat through osmosis, the physical reaction in which liquids flow across a membrane, such as the wall of a cell, from a less dense to a more dense solu- tion. The salt or sugar used in curing dissolve in the liquid on the surface of the meat to make a solution that is more dense than the liquid inside the cells of the meat. Water flows out of the meat and out of the cells of any microorganisms living on the meat, killing the micro-organisms and protecting the meat from bacterial damage. Salt-cured meat is higher in sodium than fresh meat. Smoking. Hanging fresh meat over an open fire slowly dries the meat, kills microorgan- isms on its surface, and gives the meat a rich, smoky flavor. The flavor varies with the wood used in the fire. Meats smoked over an open fire are exposed to carcinogenic chemicals in the smoke, including a-benzopyrene. Artificial smoke flavoring is commercially treated to remove tar and a-benzopyrene.

Medical Uses and/or Benefits Treating and/or preventing iron deficiency. Without meat in the diet, it is virtually impossible for an adult woman to meet her iron requirement without supplements.

Adverse Effects Associated with This Food Increased risk of cardiovascular disease. Like all foods from animals, game meats are a source of cholesterol. To reduce the risk of heart disease, the National Cholesterol Education Project recommends following the Step I and Step II diets. The Step I diet provides no more than 30 percent of total daily calories from fat, no more than 10 percent of total daily calories from saturated fat, and no more than 300 mg of cholesterol per day. It is designed for healthy people whose cholesterol is in the range of 200 –239 mg/dL. The Step II diet provides 25– 35 percent of total calories from fat, less than 7 percent of total calories from saturated fat, up to 10 percent of total calories from polyunsaturated fat, up to 20 percent of total calories from monounsaturated fat, and less than 300 mg cho- lesterol per day. This stricter regimen is designed for people who have one or more of the following conditions: •  Existing cardiovascular disease •  High levels of low-density lipoproteins (LDLs, or “bad” cholesterol) or low levels of high-density lipoproteins (HDLs, or “good” cholesterol) •  Obesity •  Type 1 diabetes (insulin-dependent diabetes, or diabetes mellitus) •  Metabolic syndrome, a.k.a. insulin resistance syndrome, a cluster of risk fac- tors that includes type 2 diabetes (non-insulin-dependent diabetes) Food-borne illness. Improperly cooked meat contaminated with E. coli O157:H7 has been linked to a number of fatalities in several parts of the United States. In addition, meat con- taminated with other bacteria, viruses, or parasites poses special problems for people with a weakened immune system: the very young, the very old, cancer chemotherapy patients, and people with HIV. Cooking meat to an internal temperature of 140°F should destroy Salmo- nella and Campylobacter jejuni; to 165°F, E. coli, and to 212°F, Listeria monocytogenes. Decline in kidney function. Proteins are nitrogen compounds. When metabolized, they yield ammonia that is excreted through the kidneys. In laboratory animals, a sustained high-pro- tein diet increases the flow of blood through the kidneys, accelerating the natural age-related decline in kidney function. Some experts suggest that this may also occur in human beings.

Food/Drug Interactions Monoamine oxidase (MAO) inhibitors. Meat “tenderized” with papaya or a papain powder can interact with the class of antidepressant drugs known as monoamine oxidase inhibi- tors. Papain meat tenderizers work by breaking up the long chains of protein molecules. One by-product of this process is tyramine, a substance that constructs blood vessels and raises blood pressure. M AO inhibitors inactivate naturally occurring enzymes in your body that metabolize tyramine. If you eat a food such as papain-tenderized meat, which is high in tyramine, while you are taking an M AO inhibitor, you cannot effectively eliminate the tyramine from your body. The result may be a hypertensive crisis.... game meat

Goitre

SIMPLE GOITRE A benign enlargement of the THYROID GLAND with normal production of hormone. It is ENDEMIC in certain geographical areas where there is IODINE de?ciency. Thus, if iodine intake is de?cient, the production of thyroid hormone is threatened and the anterior PITUITARY GLAND secretes increased amounts of thyrotrophic hormone with consequent overgrowth of the thyroid gland. Simple goitres in non-endemic areas may occur at puberty, during pregnancy and at the menopause, which are times of increased demand for thyroid hormone. The only e?ective treament is thyroid replacement therapy to suppress the enhanced production of thyrotrophic hormone. The prevalence of endemic goitre can be, and has been, reduced by the iodinisation of domestic salt in many countries. NODULAR GOITRES do not respond as well as the di?use goitres to THYROXINE treatment. They are usually the result of alternating episodes of hyperplasia and involution which lead to permanent thyroid enlargement. The only e?ective way of curing a nodular goitre is to excise it, and THYROIDECTOMY should be recommended if the goitre is causing pressure symptoms or if there is a suspicion of malignancy. LYMPHADENOID GOITRES are due to the production of ANTIBODIES against antigens (see ANTIGEN) in the thyroid gland. They are an example of an autoimmune disease. They tend to occur in the third and fourth decade and the gland is much ?rmer than the softer gland of a simple goitre. Lymphadenoid goitres respond to treatment with thyroxine. TOXIC GOITRES may occur in thyrotoxicosis (see below), although much less frequently autonomous nodules of a nodular goitre may be responsible for the increased production of thyroxine and thus cause thyrotoxicosis. Thyrotoxicosis is also an autoimmune disease in which an antibody is produced that stimulates the thyroid to produce excessive amounts of hormone, making the patient thyrotoxic.

Rarely, an enlarged gland may be the result of cancer in the thyroid.

Treatment A symptomless goitre may gradually disappear or be so small as not to merit treatment. If the goitre is large or is causing the patient di?culty in swallowing or breathing, it may need surgical removal by partial or total thyroidectomy. If the patient is de?cient in iodine, ?sh and iodised salt should be included in the diet.

Hyperthyroidism is a common disorder affecting 2–5 per cent of all females at some time in their lives. The most common cause – around 75 per cent of cases – is thyrotoxicosis (see below). An ADENOMA (or multiple adenomas) or nodules in the thyroid also cause hyperthyroidism. There are several other rare causes, including in?ammation caused by a virus, autoimune reactions and cancer. The symptoms of hyperthyroidism affect many of the body’s systems as a consequence of the much-increased metabolic rate.

Thyrotoxicosis is a syndrome consisting of di?use goitre (enlarged thyroid gland), over-activity of the gland and EXOPHTHALMOS (protruding eyes). Patients lose weight and develop an increased appetite, heat intolerance and sweating. They are anxious, irritable, hyperactive, suffer from TACHYCARDIA, breathlessness and muscle weakness and are sometimes depressed. The hyperthyroidism is due to the production of ANTIBODIES to the TSH receptor (see THYROTROPHIN-STIMULATING HORMONE (TSH)) which stimulate the receptor with resultant production of excess thyroid hormones. The goitre is due to antibodies that stimulate the growth of the thyroid gland. The exoph-

thalmos is due to another immunoglobulin called the ophthalmopathic immunoglobulin, which is an antibody to a retro-orbital antigen on the surface of the retro-orbital EYE muscles. This provokes in?ammation in the retro-orbital tissues which is associated with the accumulation of water and mucopolysaccharide which ?lls the orbit and causes the eye to protrude forwards.

Although thyrotoxicosis may affect any age-group, the peak incidence is in the third decade. Females are affected ten times as often as males; the prevalence in females is one in 500. As with many other autoimmune diseases, there is an increased prevalence of autoimmune thyroid disease in the relatives of patients with thyrotoxicosis. Some of these patients may have hypothyroidism (see below) and others, thyrotoxicosis. Patients with thyrotoxicosis may present with a goitre or with the eye signs or, most commonly, with the symptoms of excess thyroid hormone production. Thyroid hormone controls the metabolic rate of the body so that the symptoms of hyperthyroidism are those of excess metabolism.

The diagnosis of thyrotoxicosis is con?rmed by the measurement of the circulating levels of the two thyroid hormones, thyroxine and TRIIODOTHYRONINE.

Treatment There are several e?ective treatments for thyrotoxicosis. ANTITHYROID DRUGS These drugs inhibit the iodination of tyrosine and hence the formation of the thyroid hormones. The most commonly used drugs are carbimazole and propylthiouricil: these will control the excess production of thyroid hormones in virtually all cases. Once the patient’s thyroid is functioning normally, the dose can be reduced to a maintenance level and is usually continued for two years. The disadvantage of antithyroid drugs is that after two years’ treatment nearly half the patients will relapse and will then require more de?nitive therapy. PARTIAL THYROIDECTOMY Removal of three-quarters of the thyroid gland is e?ective treatment of thyrotoxicosis. It is the treatment of choice in those patients with large goitres. The patient must however be treated with medication so that they are euthyroid (have a normally functioning thyroid) before surgery is undertaken, or thyroid crisis and cardiac arrhythmias may complicate the operation. RADIOACTIVE IODINE THERAPY This has been in use for many years, and is an e?ective means of controlling hyperthyroidism. One of the disadvantages of radioactive iodine is that the incidence of hypothyroidism is much greater than with other forms of treatment. However, the management of hypothyroidism is simple and requires thyroxine tablets and regular monitoring for hypothyroidism. There is no evidence of any increased incidence of cancer of the thyroid or LEUKAEMIA following radio-iodine therapy. It has been the pattern in Britain to reserve radio-iodine treatment to those over the age of 35, or those whose prognosis is unlikely to be more than 30 years as a result of cardiac or respiratory disease. Radioactive iodine treatment should not be given to a seriously thyrotoxic patient. BETA-ADRENOCEPTOR-BLOCKING DRUGS Usually PROPRANOLOL HYDROCHLORIDE: useful for symptomatic treatment during the ?rst 4–8 weeks until the longer-term drugs have reduced thyroid activity.

Hypothyroidism A condition resulting from underactivity of the thyroid gland. One form, in which the skin and subcutaneous tissues thicken and result in a coarse appearance, is called myxoedema. The thyroid gland secretes two hormones – thyroxine and triiodothyronine – and these hormones are responsible for the metabolic activity of the body. Hypothyroidism may result from developmental abnormalities of the gland, or from a de?ciency of the enzymes necessary for the synthesis of the hormones. It may be a feature of endemic goitre and retarded development, but the most common cause of hypothyroidism is the autoimmune destruction of the thyroid known as chronic thyroiditis. It may also occur as a result of radio-iodine treatment of thyroid overactivity (see above) and is occasionally secondary to pituitary disease in which inadequate TSH production occurs. It is a common disorder, occurring in 14 per 1,000 females and one per 1,000 males. Most patients present between the age of 30 and 60 years.

Symptoms As thyroid hormones are responsible for the metabolic rate of the body, hypothyroidism usually presents with a general sluggishness: this affects both physical and mental activities. The intellectual functions become slow, the speech deliberate and the formation of ideas and the answers to questions take longer than in healthy people. Physical energy is reduced and patients frequently complain of lethargy and generalised muscle aches and pains. Patients become intolerant of the cold and the skin becomes dry and swollen. The LARYNX also becomes swollen and gives rise to a hoarseness of the voice. Most patients gain weight and develop constipation. The skin becomes dry and yellow due to the presence of increased carotene. Hair becomes thinned and brittle and even baldness may develop. Swelling of the soft tissues may give rise to a CARPAL TUNNEL SYNDROME and middle-ear deafness. The diagnosis is con?rmed by measuring the levels of thyroid hormones in the blood, which are low, and of the pituitary TSH which is raised in primary hypothyroidism.

Treatment consists of the administration of thyroxine. Although tri-iodothyronine is the metabolically active hormone, thyroxine is converted to tri-iodothyronine by the tissues of the body. Treatment should be started cautiously and slowly increased to 0·2 mg daily – the equivalent of the maximum output of the thyroid gland. If too large a dose is given initially, palpitations and tachycardia are likely to result; in the elderly, heart failure may be precipitated.

Congenital hypothyroidism Babies may be born hypothyroid as a result of having little or no functioning thyroid-gland tissue. In the developed world the condition is diagnosed by screening, all newborn babies having a blood test to analyse TSH levels. Those found positive have a repeat test and, if the diagnosis is con?rmed, start on thyroid replacement therapy within a few weeks of birth. As a result most of the ill-effects of cretinism can be avoided and the children lead normal lives.

Thyroiditis In?ammation of the thyroid gland. The acute form is usually caused by a bacterial infection elsewhere in the body: treatment with antibiotics is needed. Occasionally a virus may be the infectious agent. Hashimoto’s thyroiditis is an autoimmune disorder causing hypothyroidism (reduced activity of the gland). Subacute thyroiditis is in?ammation of unknown cause in which the gland becomes painful and the patient suffers fever, weight loss and malaise. It sometimes lasts for several months but is usually self-limiting.

Thyrotoxic adenoma A variety of thyrotoxicosis (see hyperthyroidism above) in which one of the nodules of a multinodular goitre becomes autonomous and secretes excess thyroid hormone. The symptoms that result are similar to those of thyrotoxicosis, but there are minor di?erences.

Treatment The ?rst line of treatment is to render the patient euthyroid by treatment with antithyroid drugs. Then the nodule should be removed surgically or destroyed using radioactive iodine.

Thyrotoxicosis A disorder of the thyroid gland in which excessive amounts of thyroid hormones are secreted into the bloodstream. Resultant symptoms are tachycardia, tremor, anxiety, sweating, increased appetite, weight loss and dislike of heat. (See hyperthyroidism above.)... goitre

Immunoassay

Procedures which measure the concentration of any antigenic material (see ANTIGEN) to which an antibody (see ANTIBODIES) can be created. The amount of antigen bound to this antibody is proportional to the parent substance. Enzymes (see ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA)) or radioactive labels (RADIOIMMUNOASSAY) are used to measure the concentration of antigenic material.... immunoassay

Bai Hao Oolong Tea - The Taiwanese Oolong Tea

Bai Hao Oolong Tea is a type of oolong tea, made from the leaves of the Camellia sinensis plant. Although Oolong tea is known as a traditional Chinese tea, the Bai Hao Oolong tea is made in Taiwan. Find out more about the Bai Hao Oolong tea! About Bai Hao Oolong tea Bai Hao Oolong tea is a type of Oolong tea produced in Taiwan, in the Hsinchu County. In English, it means “white tip oolong tea”. It is also known by the name Dongfang meiren; in English, its name is translated as “oriental beauty tea”. It is also said that, at the beginning of the 20th century, a British tea merchant presented Queen Elizabeth II. After tasting it, she also called it “Oriental Beauty”, which became one of the tea’s well-known names. The name Bai Hao Oolong tea, translated as “white tip oolong tea”, refers to the leaves. Theyare dark purple or brown, while the tips have a white, silvery color. The Bai Hao Oolong tea has a sweet and fruity taste, while the color of the beverage is a beautiful bright reddish-orange. Production of Bai Hao Oolong tea The tea bushes that produce the leaves of Bai Hao Oolong tea are cultivated in Northern Taiwan. They are grown without using any kind of pesticide. This is to encourage the tea green leafhopper to feed on the leaves, stems, and buds in order to suck the phloem juice. The buds then turn white, as the plant becomes oxidized where it was bit. This is what gives the tea its unique, sweet flavor. In order to have the tea green leafhopper bite on the plants, it is necessary that the bushes producing Bai Hao Oolongtea leaves be cultivated in warmer areas. The tea bushes are planted in the northwestern part of the country, in lower altitude areas which have sufficient sunshine and humidity. It is harvested during mid-summer and then, it is fermented up to 70%. Only the bud and the top two leaves are used. How to prepare Bai Hao Oolong tea In order to prepare Bai Hao Oolong tea, use two grams of tea leaves for every 150 ml of water. The ideal water temperature is around 80°C-85°C, while the steeping time is of 1-2 minutes. The Bai Hao Oolongtea leaves can be used for more than one brewing, though you have to gradually increase steeping time. Benefits of Bai Hao Oolong tea Oolong teas are good for our health, and the Bai Hao Oolong tea is not an exception. Read more about some health benefits of the Bai Hao Oolong tea. First, the polyphenols in its composition help you to lose weight. They increase the function of the enzymes which are responsible with burning fat. That’s why it’s a good idea to drink cups of Bai Hao Oolong teaif you’re on a diet. Bai Hao Oolong tea also contains fluoride, which helps you maintain a good oral hygiene. It helps protect your teeth as it prevents the decaying of teeth and stops the plaque build-up. Overall, it makes your teeth stronger. The polyphenols in the Bai Hao Oolong tea also help treat skin problems such as eczema and rashes. Other skin problems can be treated with Bai Hao Oolong tea, as well. The antioxidants in its composition fight against the free radicals affecting your skin. Some of the skin benefits include reducing the dark spots and wrinkles, slowing down the aging process, and improving the color of the skin. They also help protect you against cardiovascular diseases and cancer. Drinking Bai Hao Oolong tea also helps reduce high blood pressure and blood sugar levels. It is especially good for diabetes patients, who can keep the blood glucose level under control. Lastly,Bai Hao Oolong teais also helpful when it comes to increasing energy, reducing stress and improving brain power. Side effects of Bai Hao Oolong tea While there are many health benefits when drinking Bai Hao Oolong tea, don’t forget that there are a few side effects, as well. One is related to the caffeine found in the Bai Hao Oolong tea. Although the amount is less than in most types of black tea, you still have to be careful if caffeine isn’t good for your body. Be careful not to get the following symptoms: insomnia, anxiety, headache, dizziness, irritability, and blurred vision. Also, pregnant women have to reduce the amount of tea they drink, as the caffeine may cause miscarriages and birth defects. It can also affect the child during breast feeding. It’s important not to drink too much tea either, including Bai Hao Oolong tea. IT is generally recommended that you not drink more than six cups of tea a day. General symptoms that may appear when drinking too much tea are loss of appetite, diarrhea, vomiting, headaches, dizziness, insomnia, and irregular heartbeats. Also, it was discovered that, among elderly people, excessive amount of Bai Hao Oolong tea can cause hypokalemia. The Bai Hao Oolong tea is a richly-flavored, fruity tea that also keeps you healthy. If you decide to include it in your daily diet, you surely won’t regret it.... bai hao oolong tea - the taiwanese oolong tea

Mitochondria

The rod-like bodies in the CELLS of the body which contain the enzymes (see ENZYME) necessary for the activity of the cell. They have been described as the ‘power plant of the cell’... mitochondria

Parotid

A pair of salivary glands tucked into the notch in front of each ear and emptying through parotid ducts by each upper 2nd molar. Although the fluid has some of the thick viscous lubricant nature of saliva from the glands in the floor of the mouth, the parotids secrete high levels of ptyelin and amylase (starch-digesting enzymes) lysozymes (antimicrobial enzymes) and a group of proteins loosely called parotin that stimulate epithelial and nerve cell growth...a lot more here than just spit.... parotid

Bean Sprouts

See also Beans.

Nutritional Profile Energy value (calories per serving): Low Protein: High Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Moderate Sodium: Low Major vitamin contribution: B vitamins, folate, vitamin C Major mineral contribution: Iron, potassium

About the Nutrients in This Food Because beans use stored starches and sugars to produce green shoots called sprouts, sprouted beans have less carbohydrate than the beans from which they grow. But bean sprouts are a good source of dietary fiber, including insoluble cellulose and lignin in leaf parts and soluble pectins and gums in the bean. The sprouts are also high in the B vitamin folate and vitamin C. One-half cup raw mung bean sprouts has 1.2 mg dietary fiber, 31.5 mcg folate (8 percent of the R DA), and 7 mg vitamin C (9 percent of the R DA for a woman, 7 percent of the R DA for a man). Raw beans contain anti-nutrient chemicals that inhibit the enzymes we use to digest proteins and starches; hemagglutinins (substances that make red blood cells clump together); and “factors” that may inactivate vita- min A. These chemicals are usually destroyed when the beans are heated. with the bean must be cooked before serving. Sprouted beans served

The Most Nutritious Way to Serve This Food Cooked (see Adverse effects associated with this food ).

Diets That May Restrict or Exclude This Food Low-fiber, low-residue diet

Buying This Food Look for: Fresh, crisp sprouts. The tips should be moist and tender. (The shorter the sprout, the more tender it will be.) It is sometimes difficult to judge bean sprouts packed in plastic bags, but you can see through to tell if the tip of the sprout looks fresh. Sprouts sold from water-filled bowls should be refrigerated, protected from dirt and debris, and served with a spoon or tongs, not scooped up by hands. Avoid: Mushy sprouts (they may be decayed) and soft ones (they have lost moisture and vitamin C).

Storing This Food Refrigerate sprouts in a plastic bag to keep them moist and crisp. If you bought them in a plastic bag, take them out and repack them in bags large enough that they do not crush each other. To get the most vitamin C, use the sprouts within a few days.

Preparing This Food R inse the sprouts thoroughly under cold running water to get rid of dirt and sand. Discard any soft or browned sprouts, then cut off the roots and cook the sprouts. Do not tear or cut the sprouts until you are ready to use them. When you slice into the sprouts, you tear cells, releasing enzymes that begin to destroy vitamin C.

What Happens When You Cook This Food Cooking destroys some of the heat-sensitive vitamin C in sprouts. To save it, steam the sprouts quickly, stir-fry them, or add them uncooked just before you serve the dish.

How Other Kinds of Processing Affect This Food Canning. Vitamin C is heat-sensitive, and heating the sprouts during the canning process reduces their vitamin C content.

Medical Uses and/or Benefits Lower risk of some birth defects. As many as t wo of ever y 1,000 babies born in the United States each year may have cleft palate or a neural tube (spinal cord) defect due to their mothers’ not having gotten adequate amounts of folate during pregnancy. The R DA for folate is 400 mcg for healthy adult men and women, 600 mcg for pregnant women, and 500 mcg for women who are nursing. Taking folate supplements before becoming pregnant and continuing through the first t wo months of pregnancy reduces the risk of cleft palate; taking folate through the entire pregnancy reduces the risk of neural tube defects. Lower risk of heart attack. In the spring of 1998, an analysis of data from the records for more than 80,000 women enrolled in the long-running Nurses’ Health Study at Harvard School of Public Health/Brigham and Woman’s Hospital, in Boston, demonstrated that a diet provid- ing more than 400 mcg folate and 3 mg vitamin B6 daily, from either food or supplements, more than twice the current R DA for each, may reduce a woman’s risk of heart attack by almost 50 percent. Although men were not included in the analysis, the results are assumed to apply to them as well. However, data from a meta-analysis published in the Journal of the American Medical Association in December 2006 called this theory into question. Researchers at Tulane University examined the results of 12 controlled studies in which 16,958 patients with preexisting cardiovascular disease were given either folic acid supplements or placebos (“look-alike” pills with no folic acid) for at least six months. The scientists, who found no reduction in the risk of further heart disease or overall death rates among those taking folic acid, concluded that further studies will be required to verif y whether taking folic acid supplements reduces the risk of cardiovascular disease.

Adverse Effects Associated with This Food Food poisoning: Reacting to an outbreak of Salmonella and E. coli O157:H7 food poisoning associated with eating raw alfalfa sprouts, the Food and Drug Administration issued a warn- ing in 1998 and again in summer 1999, cautioning those at high risk of food-borne illness not to eat any raw sprouts. The high-risk group includes children, older adults, and people with a weakened immune system (for example, those who are HIV-positive or undergoing cancer chemotherapy). Tests conducted by the U.S. Department of Agriculture in 1999 sug- gest that irradiating raw sprouts and bathing them in an antiseptic solution at the processing plant may eliminate disease organisms and prolong the vegetable’s shelf life; this remains to be proven.... bean sprouts

Sgot And Sgpt

Liver enzymes that are normally only present in minute quantities in the blood, they become elevated under a variety of circumstances, particularly hepatitis.... sgot and sgpt

St John’s Wort

A herbal remedy which has achieved popularity as a treatment for mild depression. It may, however, induce the production of enzymes (see ENZYME) that metabolise drugs, and several important interactions have been identi?ed which may result in unwanted side-effects, even when treatment with St John’s Wort is stopped.... st john’s wort

Benefits Of Muira Puama Tea

For a sweet tea, try the muira puama tea. As an herbal tea, it has many health benefits, especially for men. Read the article and find out more about the muira puama tea! About Muira Puama Tea The main ingredient of the muira puama tea is, of course, the muira puama herbal plant. It is a flowering plant with two species (Benth and Anselmino). Its origin can be found in the Amazonian rainforests, although at present it is grown in Europe, as well. The trees grow up to 4 meters, sometimes even taller. They have short-petioled leaves which are light green on upper surface and dark brown on lower surface. It has small, white flowers that have a similar scent to those of jasmine. How to prepare Muira Puama Tea In order to drink a cup of muira puama tea, pour boiling water in a cup that contains one teabag or a teaspoon of dried herbs. Cover the cup and let it steep for 2-4 minutes. Next, remove the teabag or tea herbs. If you want, you can add milk and honey to your cup of tea, to sweeten the taste. Muira Puama Iced Tea You can also enjoy muira puama tea during summertime, by preparing it as an iced tea. For 1 liter, you mainly need 5 teabags, 2 cups of boiling water, and a similar amount of cold water. Place the teabags into a teapot or a heat resistant pitcher, then pour the boiling water. Let it steep for about 5 minutes, while you fill a serving pitcher with cold water. Remove the tea bags and pour the tea into the serving pitcher. Add ice and more cold water to the serving pitcher. Sweeten it with honey, sugar or anything else that comes to your mind. Components of Muira Puama Tea Muira Puama tea’s components come from the herb with the same name. There are two medically active ones: long-chain fatty acids and alkaloid chemicals. Also, the bark and roots of the plant (which are used to make the tea) contain some of the following constituentsg: alpha-pinene, alpha-terpinene, beta-sitosterol, camphor, eugenol, imonene, linalool, stigmasterols, and various acids and essential oils. Muira Puama Tea Benefits The most important benefit of the muira puama tea is for men. After all, the muira puama herb is also known as the “Viagra of the Amazon”. That is because it helps with sexual impotence, by increasing the blood flow to the genital areas. It also helps in the treatment of male pattern baldness. Muira puama tea can be used as a tonic for nervous conditions and depressions. It is useful when it comes to improving one’s memory, especially among elders. The tea also increases your energy level, and improves mental focus and clarity. It is often used in the treatment for rheumatism and indigestion. It also helps women with treating the discomforts of menopause, as well as lessening the pain that comes with menstrual cramps. Muira Puama Tea side effects It is considered best to avoid drinking muira puama tea during pregnancy or when you are breast feeding. In both cases, it can affect the baby.The teaalsoincludes some enzymes which are harmful if you’re suffering from peptic ulcers. In this case, it is recommended that you not consume this type of tea. Consumption of muira puama tea can also lead to an increase in the blood pressure levels. For most people, it is only temporary, but it can be harmful for people with existing complications of blood pressure levels. If this is your case, it’s best that you consult your doctor first before you start drinking this tea. As muira puama acts as a stimulant, drinking too much muira puama tea may lead to anxiety and insomnia. It is generally advised that you not drink more than six cups of tea a day, no matter the type of tea. Other symptoms that you might get are headaches, loss of appetite, vomiting, diarrhea, dizziness, and irregular heartbeats.   Muira puama tea is clearly full of health benefits, especially for men. It is good for women, as well, as long as it is not consumed during pregnancy or breast feeding periods. Be careful not to get any side effects and you can enjoy this type of tea with no worries.... benefits of muira puama tea

Carica Papaya

Linn.

Family: Caricaceae.

Habitat: Native to West Indies and Central America; now cultivated in Uttar Pradesh, Punjab, Rajasthan, Gujarat, Maharashtra and South India.

English: Papaya, Papaw.

Ayurvedic: Erand-karkati, Papitaa.

Unani: Papitaa Desi.

Siddha/Tamil: Pappaali, Pappayi.

Action: Ripe fruit—stomachic, digestive, carminative, diuretic, galactagogue. Useful in bleeding piles, haemoptysis, dysentery and chronic diarrhoea. Seeds— emmengagogue, abortifacient, vermifuge. Juice of seeds is administered in enlarged liver and spleen, and in bleeding piles.

Key application: Papain, the enzyme mixture extracted from raw papain (latex of Carica papaya), has been included among unapproved herbs by German Commission E. Experiment-based as well as clinical research indicate that papain may be effective (in the treatment of inflammations) in high doses (daily dose 1500 mg corresponding to 2520 FIP units).

Unripe fruit—emmengagogue and abortifacient. Latex—applied topically on eczema, ringworm, psoriasis, corns, warts, sloughing wounds, carbuncles and eschar of burns.

Green parts of the plant and seed contain an alkaloid carpaine. Seeds also contain carpasemine.

Latex contain enzymes—papain and chymopapain and alkaloids carpaine and pseudocarpaine. A proteinaceous material from latex showed anticoagulant activity; in higher doses it is heart depressant and as a spasmogen on smooth muscle of guinea pig ileum. An alkaloid solution showed depressant action on heart, blood pressure and intestine.

The anthelmintic action of seeds against Ascaris lumbricoides is due to carpasemine.

Papain, an enzyme mixture prepared from the fruit, seeds and leaf, hydrolyses polypeptides, amides and esters, particularly when used in an alkaline environment, and is used in digestive disorders.

Papain inhibits platelet aggregation, which may further increase the risk of bleeding in patients also taking anticoagulants. Concurrent administration of cyclophosphamide with papain caused sever damage to lung tissues in rats. (Sharon M. Herr.)

Chymopapin C is an immunosup- pressive enzyme from plant extract. Carpaine, extracted from the plant, exhibited anti-tubercular activity, also antitumour in vitro, and hypotensive.

Dosage: Leaf—40-80 ml infusion; latex—3-6 g (CCRAS.)... carica papaya

Blackberries

(Boysenberries, dewberries, youngberries)

Nutritional Profile Energy value (calories per serving): Low Protein: Low Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Moderate Sodium: Low Major vitamin contribution: Vitamin A, vitamin C Major mineral contribution: Calcium

About the Nutrients in This Food Blackberries have no starch but do contain sugars and dietary fiber, pri- marily pectin, which dissolves as the fruit matures. Unripe blackberries contain more pectin than ripe ones. One-half cup fresh blackberries has 3.8 g dietary fiber, 15 mg vitamin C (20 percent of the R DA for a woman, 17 percent of the R DA for a man), and 18 mcg folate (5 percent of the R DA).

The Most Nutritious Way to Serve This Food Fresh or lightly cooked.

Buying This Food Look for: Plump, firm dark berries with no hulls. A firm, well-rounded berry is still moist and fresh; older berries lose moisture, which is why their skin wrinkles. Avoid: Baskets of berries with juice stains or liquid leaking out of the berries. The stains and leaks are signs that there are crushed—and possibly moldy—berries inside.

Storing This Food Cover berries and refrigerate them. Then use them in a day or two. Do not wash berries before storing. The moisture collects in spaces on the surface of the berries that may mold in the refrigerator. Also, handling the berries may damage their cells, releasing enzymes that can destroy vitamins.

Preparing This Food R inse the berries under cool running water, then drain them and pick them over carefully to remove all stems and leaves.

What Happens When You Cook This Food Cooking destroys some of the vitamin C in fresh blackberries and lets water-soluble B vitamins leach out. Cooked berries are likely to be mushy because the heat and water dis- solve their pectin and the skin of the berry collapses. Cooking may also change the color of blackberries, which contain soluble red anthocyanin pigments that stain cooking water and turn blue in basic (alkaline) solutions. Adding lemon juice to a blackberry pie stabilizes these pigments; it is a practical way to keep the berries a deep, dark reddish blue.

How Other Kinds of Processing Affect This Food Canning. The intense heat used in canning fruits reduces the vitamin C content of black- berries. Berries packed in juice have more nutrients, ounce for ounce, than berries packed in either water or syrup.

Medical Uses and/or Benefits Anticancer activity. Blackberries are rich in anthocyanins, bright-red plant pigments that act as antioxidants—natural chemicals that prevent free radicals (molecular fragments) from joining to form carcinogenic (cancer-causing) compounds. Some varieties of blackberries also contain ellagic acid, another anticarcinogen with antiviral and antibacterial properties.

Adverse Effects Associated with This Food Allergic reaction. Hives and angioedema (swelling of the face, lips, and eyes) are common allergic responses to berries, virtually all of which have been known to trigger allergic reactions. According to the Merck Manual, berries are one of the 12 foods most likely to trigger classic food allergy symptoms. The others are chocolate, corn, eggs, fish, legumes (peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see w h eat cer ea ls).... blackberries

Cassytha Filiformis

Linn.

Family: Lauraceae

Habitat: Throughout the greater parts of India.

English: Doddar-Laurel, Love-Vine.

Ayurvedic: Amarvalli, Aakaashbel. (Cuscuta reflexa is also known as Amarvalli.)

Siddha/Tamil: Erumaikkottan.

Action: Astringent, diuretic (given in dropsy and anasarca, also in biliousness, chronic dysentery, haemoptysis and for supressing lactation after still-birth); piscicidal and insecticidal (used as a hair-wash for killing vermin).

The plant contains aporphine alkaloids. calcium, phosphorus, thiamine, riboflavin and niacin; also tocopherols. Nuts, crushed with vinegar and barley flour, are used against indurations of breast. The extract of nuts exhibits possibility of its use as a platelet inhibitor in thrombosis and atherosclerosis. Leaves are inhibitors of pectinolytic enzymes.

American chestnut and European chestnut are equated with Castanea dentata and C. sativa,respectively. Both are used for respiratory ailments.... cassytha filiformis

Thrombolysis

The breakdown of a BLOOD CLOT by enzymic activity (see ENZYME). Naturally occurring enzymes limit the enlargement of clots, and drugs – for example, STREPTOKINASE – may be given to ‘dissolve’ clots (e.g. following a coronary THROMBOSIS – see under HEART, DISEASES OF). The drug needs to be given within 6–12 hours to be e?ective in reducing the death rate, so prompt diagnosis and transfer to hospital is essential: a short ‘door-to-needle’ time. An unwanted e?ect may be increased risk of bleeding, especially in the elderly. It has been used in trials in patients with PULMONARY EMBOLISM and with peripheral arterial disease, but its value in these conditions is uncertain.... thrombolysis

Biocatalyst

A herb that initiates a change in the metabolism of the body. It exercises a specific chemical action relating to vitamins, hormones, enzymes and minerals. Parsley is one of the most important. Others – Watercress, Alfalfa, Fenugreek seeds, Lettuce, Marshmallow, Carrots. ... biocatalyst

Molybdenum

Trace element. RDA 0.15 to 0.5mg.

Deficiency. Sexual impotence in aged men. Decayed teeth, allergy, palpitation.

Believed to be linked with cancer of the gullet in China where soil is deficient in this element.

Body effects. Male sexual libido, dental health, iron metabolism, function of some enzymes.

Sources. Most foods. Liver, oats, buckwheat, barley, wholegrains, lima beans, sunflower seeds, pulses, Soya beans and flour.

Note: High levels of uric acid (a cause of gout and gravel) have been linked with a high content of the element in some native soils – especially in Armenia. ... molybdenum

Acarbose

A drug that is used to treat type 2 diabetes mellitus.

Acarbose acts on enzymes in the intestines, inhibiting the digestion of starch and therefore slowing the rise in blood glucose levels after a carbohydrate meal.... acarbose

Blueberries

(Huckleberries)

Nutritional Profile Energy value (calories per serving): Low Protein: Low Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Moderate Sodium: Low Major vitamin contribution: Vitamin C Major mineral contribution: Calcium

About the Nutrients in This Food Blueberries have some protein and a little fat. They have no starch but do contain sugars and dietary fiber—primarily pectin, which dissolves as the fruit matures—and lignin in the seeds. (The difference between blueber- ries and huckleberries is the size of their seeds; blueberries have smaller ones than huckleberries.) One-half cup fresh blueberries has 1.5 g dietary fiber and 9.5 mg. vitamin C (13 percent of the R DA for a woman, 11 percent of the R DA for a man).

The Most Nutritious Way to Serve This Food Fresh, raw, or lightly cooked.

Buying This Food Look for: Plump, firm dark-blue berries. The whitish color on the ber- ries is a natural protective coating. Avoid: Baskets of berries with juice stains or liquid leaking out of the berries. The stains and leaks are signs that there are crushed (and possibly moldy) berries inside.

Storing This Food Cover berries and refrigerate them. Then use them in a day or two. Do not wash berries before storing. The moisture increases the chance that they will mold in the refrigerator. Also, handling the berries can damage them, tearing cells and releas- ing enzymes that will destroy vitamins. Do not store blueberries in metal containers. The anthocyanin pigments in the berries can combine with metal ions to form dark, unattractive pigment/metal compounds that stain the containers and the berries.

Preparing This Food R inse the berries under cool running water, then drain them and pick them over carefully to remove all stems, leaves, and hard (immature) or soft (over-ripe) berries.

What Happens When You Cook This Food Cooking destroys some of the vitamin C in fresh blueberries and lets water-soluble B vitamins leach out. Cooked berries are likely to be mushy because heat dissolves the pectin inside. Blueberries may also change color when cooked. The berries are colored with blue anthocyanin pigments. Ordinarily, anthocyanin-pigmented fruits and vegetables turn red- dish in acids (lemon juice, vinegar) and deeper blue in bases (baking soda). But blueberries also contain yellow pigments (anthoxanthins). In a basic (alkaline) environments, as in a batter with too much baking soda, the yellow and blue pigments will combine, turning the blueberries greenish blue. Adding lemon juice to a blueberry pie stabilizes these pigments; it is a practical way to keep the berries a deep, dark reddish blue.

How Other Kinds of Processing Affect This Food Canning and freezing. The intense heat used in canning the fruit or in blanching it before freezing reduces the vitamin C content of blueberries by half.

Medical Uses and/or Benefits Anticancer activity. According to the U.S. Department of Agriculture, wild blueberries rank first among all fruits in antioxidant content; cultivated blueberries (the ones sold in most food markets) rank second. Antioxidants are natural chemicals that inactivate free radicals, molecule fragments that can link together to form cancer-causing compounds. Several ani- mal studies attest to the ability of blueberries to inhibit the growth of specific cancers. For example, in 2005, scientists at the University of Georgia reported in the journal Food Research International that blueberry extracts inhibited the growth of liver cancer cells in laboratory settings. The following year, researchers at Rutgers University (in New Jersey) delivered data to the national meeting of the American Chemical Society from a study in which laboratory rats fed a diet supplemented with pterostilbene, another compound extracted from blueber- ries, had 57 percent fewer precancerous lesions in the colon than rats whose diet did not contain the supplement. The findings, however, have not been confirmed in humans. Enhanced memory function. In 2008, British researchers at the schools of Food Biosciences and Psychology at the University of Reading and the Institute of Biomedical and Clinical Sciences at the Peninsula Medical School (England) reported that adding blueberries to one’s normal diet appears to improve both long-term and short-term memory, perhaps because anthocyanins and flavonoids (water-soluble pigments in the berries) activate signals in the hippocampus, a part of the brain that controls learning and memory. If confirmed, the data would support the role played by diet in maintaining memory and brain function. Urinary antiseptic. A 1991 study at the Weizmann Institute of Science (Israel) suggests that blueberries, like cr anber r ies, contain a compound that inhibits the ability of Escherichia coli, a bacteria commonly linked to urinary infections, to stick to the wall of the bladder. If it cannot cling to cell walls, the bacteria will not cause an infection. This discovery lends some support to folk medicine, but how the berries work, how well they work, or in what “dos- ages” remains to be proven.

Adverse Effects Associated with This Food Allergic reaction. Hives and angiodemea (swelling of the face, lips, and eyes) are common allergic responses to berries, virtually all of which have been reported to trigger these reac- tions. According to the Merck Manual, berries are one of the 12 foods most likely to trigger classic food allergy symptoms. The others are chocolate, corn, eggs, fish, legumes (peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see wheat cer ea ls).... blueberries

Aldosterone

A hormone secreted by the adrenal cortex (the outer part of the adrenal glands). Aldosterone acts on the kidneys to regulate the concentrations of sodium and potassium in the blood and tissues and control blood pressure. Production of aldosterone is stimulated mainly by the action of angiotensin , a chemical produced by a series of reactions involving the enzymes renin and angiotensin-converting enzyme. Aldosterone production is also stimulated by the action of ACTH, which is produced by the pituitary gland.... aldosterone

Alpha-antitrypsin Deficiency

A rare genetic disorder in which a person is missing the enzyme alpha1-antitrypsin, which protects the body from damage by other enzymes.

The disease mainly affects tissues in the lungs, resulting in emphysema, and the liver, causing cirrhosis.

The effects of alpha1-antitrypsin deficiency may not become apparent until after the age of 30.

There is no cure, but symptoms can be relieved by drug treatment.

In severe cases, a liver transplant may be a possibility.... alpha-antitrypsin deficiency

Carbon Monoxide (co)

This is a colourless, odourless, tasteless, nonirritating gas formed on incomplete combustion of organic fuels. Exposure to CO is frequently due to defective gas, oil or solid-fuel heating appliances. CO is a component of car exhaust fumes and deliberate exposure to these is a common method of suicide. Victims of ?res often suffer from CO poisoning. CO combines reversibly with oxygen-carrying sites of HAEMOGLOBIN (Hb) molecules with an a?nity 200 to 300 times greater than oxygen itself. The carboxyhaemoglobin (COHb) formed becomes unavailable for oxygen transportation. In addition the partial saturation of the Hb molecule results in tighter oxygen binding, impairing delivery to the tissues. CO also binds to MYOGLOBIN and respiratory cytochrome enzymes. Exposure to CO at levels of 500 parts per million (ppm) would be expected to cause mild symptoms only and exposure to levels of 4,000 ppm would be rapidly fatal.

Each year around 50 people in the United Kingdom are reported as dying from carbon monoxide poisoning, and experts have suggested that as many as 25,000 people a year are exposed to its effects within the home, but most cases are unrecognised, unreported and untreated, even though victims may suffer from long-term effects. This is regrettable, given that Napoleon’s surgeon, Larrey, recognised in the 18th century that soldiers were being poisoned by carbon monoxide when billeted in huts heated by woodburning stoves. In the USA it is estimated that 40,000 people a year attend emergency departments suffering from carbon monoxide poisoning. So prevention is clearly an important element in dealing with what is sometimes termed the ‘silent killer’. Safer designs of houses and heating systems, as well as wider public education on the dangers of carbon monoxide and its sources, are important.

Clinical effects of acute exposure resemble those of atmospheric HYPOXIA. Tissues and organs with high oxygen consumption are affected to a great extent. Common effects include headaches, weakness, fatigue, ?ushing, nausea, vomiting, irritability, dizziness, drowsiness, disorientation, incoordination, visual disturbances, TACHYCARDIA and HYPERVENTILATION. In severe cases drowsiness may progress rapidly to COMA. There may also be metabolic ACIDOSIS, HYPOKALAEMIA, CONVULSIONS, HYPOTENSION, respiratory depression, ECG changes and cardiovascular collapse. Cerebral OEDEMA is common and will lead to severe brain damage and focal neurological signs. Signi?cant abnormalities on physical examination include impaired short-term memory, abnormal Rhomberg’s test (standing unsupported with eyes closed) and unsteadiness of gait including heel-toe walking. Any one of these signs would classify the episode as severe. Victims’ skin may be coloured pink, though this is very rarely seen even in severe incidents. The venous blood may look ‘arterial’. Patients recovering from acute CO poisoning may suffer neurological sequelae including TREMOR, personality changes, memory impairment, visual loss, inability to concentrate and PARKINSONISM. Chronic low-level exposures may result in nausea, fatigue, headache, confusion, VOMITING, DIARRHOEA, abdominal pain and general malaise. They are often misdiagnosed as in?uenza or food poisoning.

First-aid treatment is to remove the victim from the source of exposure, ensure an e?ective airway and give 100-per-cent oxygen by tight-?tting mask. In hospital, management is largely suppportive, with oxygen administration. A blood sample for COHb level determination should be taken as soon as practicable and, if possible, before oxygen is given. Ideally, oxygen therapy should continue until the COHb level falls below 5 per cent. Patients with any history of unconsciousness, a COHb level greater than 20 per cent on arrival, any neurological signs, any cardiac arrhythmias or anyone who is pregnant should be referred for an expert opinion about possible treatment with hyperbaric oxygen, though this remains a controversial therapy. Hyperbaric oxygen therapy shortens the half-life of COHb, increases plasma oxygen transport and reverses the clinical effects resulting from acute exposures. Carbon monoxide is also an environmental poison and a component of cigarette smoke. Normal body COHb levels due to ENDOGENOUS CO production are 0.4 to

0.7 per cent. Non-smokers in urban areas may have level of 1–2 per cent as a result of environmental exposure. Smokers may have a COHb level of 5 to 6 per cent.... carbon monoxide (co)

Caviar

Nutritional Profile Energy value (calories per serving): High Protein: High Fat: High Saturated fat: Low Cholesterol: High Carbohydrates: Low Fiber: None Sodium: High Major vitamin contribution: B vitamins Major mineral contribution: Calcium, iron, phosphorus

About the Nutrients in This Food Caviar is a high-fat, high-cholesterol, high-protein, low-carbohydrate food. It is extremely high in sodium (650 mg/oz.) and, ounce for ounce, contains twice as much calcium as milk.

Diets That May Restrict or Exclude This Food Low-cholesterol, controlled-fat diet Low-salt/low-sodium diet

Buying This Food Look for: Shiny, translucent, large-grained gray fresh caviar (sturgeon roe) with a clean aroma. Look for: Tightly sealed tins and jars of less expensive roe. Lumpfish roe is small-grained and usually black. Cod, salmon, carp, pike, and tuna roe are large-grained and orangey red or pinkish.

Storing This Food Store fresh caviar in the coldest part of the refrigerator; it will spoil within hours at tempera- tures above 39°F. Store jars of caviar in a cool, dark place.

Preparing This Food Always serve caviar in a dish (or jar) nestled in ice to keep it safe at room temperature. The roe contains so much salt that it will not freeze. When making canapés, add the caviar last so that the oil does not spread and discolor the other ingredients.

How Other Kinds of Processing Affect This Food Pressing. Pressed caviar is caviar with 10 percent of its moisture removed. As a result it con- tains more nutrients per ounce than regular caviar and is even higher in sodium.

Medical Uses and/or Benefits Omega-3 fish oils. Caviar contains the same protective oils found in other fish (see fish).

Food/Drug Interactions MAO inhibitors. Monoamine oxidase (M AO) inhibitors are drugs used as antidepressants or antihypertensives. They inhibit the action of enzymes that break down tyramine, a natural by-product of protein metabolism. Tyramine is a pressor amine, a chemical that constricts blood vessels and raises blood pressure. If you eat a food that contains tyramine while you are taking an M AO inhibitor, the pressor amine cannot be eliminated from your body and the result could be a hypertensive crisis (sustained elevated blood pressure). Caviar contains small amounts of tyramine.... caviar

Biopsy Samples

are analysed by staining, in which Abnormal area dyes are used to Normal to show up structures or identify constituents such as antibodies or enzymes. A tissue sample may be tested with specific antibodies in the investigation of infection and inflammation. In some cases, a tis-sue culture may be required.... biopsy samples

Cauliflower

Nutritional Profile Energy value (calories per serving): Low Protein: High Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: High Sodium: Low Major vitamin contribution: B vitamins, vitamin C Major mineral contribution: Potassium

About the Nutrients in This Food Cauliflower is an excellent source of vitamin C and a moderately good source of folate, a member of the B vitamin family. One-half cup cooked fresh cauliflower florets (the top of the plant) has one gram dietary fiber, 13.5 mcg folate (3 percent of the R DA), and 35 mg vitamin C (50 percent of the R DA for a woman, 39 percent of the R DA for a man).

The Most Nutritious Way to Serve This Food Raw or lightly steamed to protect the vitamin C. Cooked or frozen cauli-flower may have up to 50 percent less vitamin C than raw cauliflower.

Diets That May Restrict or Exclude This Food Antiflatulence diet Low-fiber diet

Buying This Food Look for: Creamy white heads with tight, compact florets and fresh green leaves. The size of the cauliflower has no bearing on its nutritional value or its taste. Avoid: Cauliflower with brown spots or patches.

Storing This Food Keep cauliflower in a cool, humid place to safeguard its vitamin C content.

Preparing This Food Pull off and discard any green leaves still attached to the cauliflower and slice off the woody stem and core. Then plunge the cauliflower, head down, into a bowl of salted ice water to flush out any insects hiding in the head. To keep the cauliflower crisp when cooked, add a teaspoon of vinegar to the water. You can steam or bake the cauliflower head whole or break it up into florets for faster cooking.

What Happens When You Cook This Food Cauliflower contains mustard oils (isothiocyanates), natural chemicals that give the vegeta- ble its taste but break down into a variety of smelly sulfur compounds (including hydrogen sulfide and ammonia) when the cauliflower is heated. The longer you cook the cauliflower, the better it will taste but the worse it will smell. Adding a slice of bread to the cooking water may lessen the odor; keeping a lid on the pot will stop the smelly molecules from floating off into the air. Cooking cauliflower in an aluminum pot will intensif y its odor and turn its creamy white anthoxanthin pigments yellow; iron pots will turn anthoxanthins blue green or brown. Like red and blue anthocyanin pigments (see beets, black ber r ies, blueber r ies), antho- xanthins hold their color best in acids. To keep cauliflower white, add a tablespoon of lemon juice, lime juice, vinegar, or milk to the cooking water. Steaming or stir-frying cauliflower preserves the vitamin C that would be lost if the vegetable were cooked for a long time or in a lot of water.

How Other Kinds of Processing Affect This Food Freezing. Before it is frozen, cauliflower must be blanched to inactivate catalase and per- oxidase, enzymes that would otherwise continue to ripen and eventually deteriorate the vegetable. According to researchers at Cornell University, cauliflower will lose less vitamin C if it is blanched in very little water (two cups cauliflower in two tbsp. water) in a microwave- safe plastic bag in a microwave oven for four minutes at 600 –700 watts. Leave the bag open an inch at the top so steam can escape and the bag does not explode.

Medical Uses and/or Benefits Protection against certain cancers. Naturally occurring chemicals (indoles, isothiocyanates, glucosinolates, dithiolethiones, and phenols) in cauliflower, Brussels sprouts, broccoli, cab- bage, and other cruciferous vegetables appear to reduce the risk of some cancers, perhaps by preventing the formation of carcinogens in your body or by blocking cancer-causing substances from reaching or reacting with sensitive body tissues or by inhibiting the trans- formation of healthy cells to malignant ones. All cruciferous vegetables contain sulforaphane, a member of a family of chemicals known as isothiocyanates. In experiments with laboratory rats, sulforaphane appears to increase the body’s production of phase-2 enzymes, naturally occurring substances that inacti- vate and help eliminate carcinogens. At the Johns Hopkins University in Baltimore, Maryland, 69 percent of the rats injected with a chemical known to cause mammary cancer developed tumors vs. only 26 percent of the rats given the carcinogenic chemical plus sulforaphane. In 1997, Johns Hopkins researchers discovered that broccoli seeds and three-day-old broccoli sprouts contain a compound converted to sulforaphane when the seed and sprout cells are crushed. Five grams of three-day-old broccoli sprouts contain as much sulforaphane as 150 grams of mature broccoli. The sulforaphane levels in other cruciferous vegetables have not yet been calculated. Vision protection. In 2004, the Johns Hopkins researchers updated their findings on sul- foraphane to suggest that it may also protect cells in the eyes from damage due to UV (ultraviolet) light, thus reducing the risk of macular degeneration, the most common cause of age-related vision loss.

Adverse Effects Associated with This Food Enlarged thyroid gland (goiter). Cruciferous vegetables, including cauliflower, contain goi- trin, thiocyanate, and isothiocyanate. These chemicals, known collectively as goitrogens, inhibit the formation of thyroid hormones and cause the thyroid to enlarge in an attempt to produce more. Goitrogens are not hazardous for healthy people who eat moderate amounts of cruciferous vegetables, but they may pose problems for people who have a thyroid condi- tion or are taking thyroid medication. Intestinal gas. Bacteria that live naturally in the gut degrade the indigestible carbohydrates (food fiber) in cauliflower, producing intestinal gas that some people find distressing.

Food/Drug Interactions Anticoagulants (blood thinners). All cruciferous vegetables (broccoli, brussels sprouts, cab- bages, cauliflower, greens, radishes, and turnips) are high in vitamin K, a nutrient that decreases the anticoagulant effect of medicine such as warfarin (Coumadin). Multiple serv- ings of this vegetable, i.e., several days a week, may interfere with the anticoagulant effect of the drug. False-positive test for occult blood in the stool. The active ingredient in the guaiac slide test for hid- den blood in feces is alphaguaiaconic acid, a chemical that turns blue in the presence of blood. Cauliflower contains peroxidase, a natural chemical that also turns alphaguaiaconic acid blue and may produce a positive test in people who do not actually have blood in the stool.... cauliflower

Celery

Nutritional Profile Energy value (calories per serving): Low Protein: Moderate Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Moderate Sodium: High Major vitamin contribution: Folate Major mineral contribution: Potassium, phosphorus

About the Nutrients in This Food Celery has moderate amounts of dietary fiber and small amounts of the B vitamin folate. One-half cup diced raw celery has one gram dietary fiber and 17 mcg folate (4 percent of the R DA).

The Most Nutritious Way to Serve This Food Fresh, filled with cheese to add protein.

Diets That May Restrict or Exclude This Food Low-fiber diet Low-sodium diet

Buying This Food Look for: Crisp, medium-size pale green celery with fresh leaves. Darker stalks have more vitamin A but are likely to be stringy. Avoid: Wilted or yellowed stalks. Wilted stalks have lost moisture and are low in vitamins A and C. Yellowed stalks are no longer fresh; their chlorophyll pigments have faded enough to let the yellow carotenes show through. Avoid bruised or rotten celery. Celery cells contain chemicals called furocoumarins (pso- ralens) that may turn carcinogenic when the cell membranes are damaged and the furocou- marins are exposed to light. Bruised or rotting celery may contain up to a hundred times the psoralens in fresh celery.

Storing This Food Handle celery carefully to avoid damaging the stalks and releasing furocoumarins. Refrigerate celery in plastic bags or in the vegetable crisper to keep them moist and crisp. They will stay fresh for about a week.

Preparing This Food R inse celery under cold running water to remove all sand and dirt. Cut off the leaves, blanch them, dry them thoroughly, and rub them through a sieve or food mill. The dry powder can be used to season salt or frozen for later use in soups or stews.

What Happens When You Cook This Food When you cook celery the green flesh will soften as the pectin inside its cells dissolves in water, but the virtually indestructible cellulose and lignin “strings” on the ribs will stay stiff. If you don’t like the strings, pull them off before you cook the celery. Cooking also changes the color of celery. Chlorophyll, the pigment that makes green vegetables green, is very sensitive to acids. When you heat celery, the chlorophyll in its stalks reacts chemically with acids in the celery or in the cooking water to form pheophytin, which is brown. The pheophytin will turn the celery olive-drab or, if the stalks have a lot of yellow carotene, bronze. You can prevent this natural chemical reaction and keep the celery green by cooking it so quickly that there is no time for the chlorophyll to react with the acids, or by cooking it in lots of water (which will dilute the acids), or by cooking it with the lid off the pot so that the volatile acids can float off into the air.

Adverse Effects Associated with This Food Contact dermatitis. Celery contains limonene, an essential oil known to cause contact der- matitis in sensitive individuals. (Limonene is also found in dill, caraway seeds, and the peel of lemon and limes.) Photosensitivity. The furocoumarins (psoralens) released by damaged or moldy celery are photosensitizers as well as potential mutagens and carcinogens. Constant contact with these chemicals can make skin very sensitive to light, a problem most common among food work- ers who handle large amounts of celery without wearing gloves. Nitrate/nitrite poisoning. Like beets, eggplant, lettuce, radish, spinach, and collard and turnip greens, celery contains nitrates that convert naturally into nitrites in your stomach and then react with the amino acids in proteins to form nitrosamines. Although some nitro- samines are known or suspected carcinogens, this natural chemical conversion presents no known problems for a healthy adult. However, when these nitrate-rich vegetables are cooked and left to stand at room temperature, bacterial enzyme action (and perhaps some enzymes in the plants) convert the nitrates to nitrites at a much faster rate than normal. These higher-nitrite foods may be hazardous for infants; several cases of “spinach poison- ing” have been reported among children who ate cooked spinach that had been left standing at room temperature.... celery

Cinnamomum Zeylanicum

Synonym: C. verum Persl.

Family: Lauraceae.

Habitat: Western Ghats at low levels. Plantations of cinnamon are confined to Kerala State.

English: Cinnamon, Ceylon Cinnamon.

Ayurvedic: Tvak, Daaruchini, Chochaa, Choncha, Varaanga, Utkata, Daarusitaa (bark).

Unani: Daarchini (bark).

Siddha/Tamil: Elavangappattai.

Folk: Daalchini.

Action: Bark—carminative, astringent, antispasmodic, expectorant, haemostatic, antiseptic. Leaf— antidiabetic. Ground cinnamon is used in diarrhoea and dysentery; for cramps of the stomach, gastric irritation; for checking nausea and vomiting; used externally in toothache, neuralgia and rheumatism. The bark is included in medicinal preparations for indigestion, flatulence, flu, mothwashes, gargles, herbal teas.

Key application: As antibacterial and fungistatic. Internally, for loss of appetite, dyspeptic complaints such as mild spastic conditions of the gastrointestinal tract, bloating and flatulence. (German Commission E, ESCOP.) Contraindicated in stomach and duodenal ulcers. (WHO.)

The Ayurvedic Pharmacopoeia ofIn- dia indicated the use of dried mature leaves of Cinnamomum tamala and dried inner bark of C. zeylanicum in sinusitis.

Cinnamaldehyde is the major constituent (74%) of the essential oil from bark.

Major constituent of the leaf oil is eugenol (28-98%) and that of root- bark oil camphor (60%).

Cinnamaldehyde is hypotensive, spasmolytic and increases peripheral blood flow; and it inhibits cyclooxy- genase and lipoxygenase enzymes of arachidonic acid metabolism.

Cinnamaldehyde exhibits CNS stimulant effects at high doses. (Natural Medicines Comprehensive Database, 2007.)

The bark oil and extracts exhibit antibacterial, antifungal and antiviral activities, and enhance trypsin activity.

Eugenol content of the leaf oil is antiseptic and anaesthetic. It is not inter- changable with the bark oil.

Root bark oil acts as a stimulant in amenorrhoea. The bark contains tannins (6.5%) consisting of tetrahydrox- yflavandiols; diterpenes, cinnzeylanin and cinnzeylanol.

C. malabatrum (Burm. f.) Blume is equated with Jangali Daarchini.

Dosage: Dried inner bark—1-3 g powder. (API Vol. I.)... cinnamomum zeylanicum

Cherries

Nutritional Profile Energy value (calories per serving): Low Protein: Moderate Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Moderate Sodium: Low Major vitamin contribution: Vitamin A (sour cherries), vitamin C Major mineral contribution: Potassium

About the Nutrients in This Food Cherries have moderate amounts of fiber, insoluble cellulose and lignin in the skin and soluble pectins in the flesh, plus vitamin C. One cup fresh red sweet cherries (two ounces, without pits) has 3.2 g dietary fiber, 64 IU vitamin A (.2 percent of the R DA) and 10.8 mg vitamin C (14 percent of the R DA for a woman, 12 percent of the R DA for a man). One-half cup canned water-packed sour/tart cherries has 0.5 g dietary fiber and 1.5 mg vitamin C, and 377 IU vitamin A (16 percent of the R DA for a woman, 13 percent of the R DA for a man). Like apple seeds and apricot, peach, or plum pits, cherry pits contain amygdalin, a naturally occurring cyanide/sugar compound that breaks down into hydrogen cyanide in the stomach. While accidentally swallow- ing a cherry pit once in a while is not a serious hazard, cases of human poisoning after eating apple seeds have been reported (see apples). NOTE : Some wild cherries are poisonous.

The Most Nutritious Way to Serve This Food Sweet cherries can be eaten raw to protect their vitamin C; sour (“cook- ing”) cherries are more palatable when cooked. * Except for maraschino cherries, which are high in sodium.

Diets That May Restrict or Exclude This Food Low-sodium diet (maraschino cherries)

Buying This Food Look for: Plump, firm, brightly colored cherries with glossy skin whose color may range from pale golden yellow to deep red to almost black, depending on the variety. The stems should be green and fresh, bending easily and snapping back when released. Avoid: Sticky cherries (they’ve been damaged and are leaking), red cherries with very pale skin (they’re not fully ripe), and bruised cherries whose flesh will be discolored under the bruise.

Storing This Food Store cherries in the refrigerator to keep them cold and humid, conserving their nutrient and flavor. Cherries are highly perishable; use them as quickly as possible.

Preparing This Food Handle cherries with care. When you bruise, peel, or slice a cherry you tear its cell walls, releasing polyphenoloxidase—an enzyme that converts phenols in the cherry into brown compounds that darken the fruit. You can slow this reaction (but not stop it completely) by dipping raw sliced or peeled cherries into an acid solution (lemon juice and water or vinegar and water) or by mixing them with citrus fruits in a fruit salad. Polyphenoloxidase also works more slowly in the cold, but storing sliced or peeled cherries in the refrigerator is much less effective than bathing them in an acid solution.

What Happens When You Cook This Food Depending on the variety, cherries get their color from either red anthocyanin pigments or yellow to orange to red carotenoids. The anthocyanins dissolve in water, turn redder in acids and bluish in bases (alkalis). The carotenoids are not affected by heat and do not dissolve in water, which is why cherries do not lose vitamin A when you cook them. Vitamin C, how- ever, is vulnerable to heat.

How Other Kinds of Processing Affect This Food Canning and freezing. Canned and frozen cherries contain less vitamin C and vitamin A than fresh cherries. Sweetened canned or frozen cherries contain more sugar than fresh cherries. Candying. Candied cherries are much higher in calories and sugar than fresh cherries. Maraschino cherries contain about twice as many calories per serving as fresh cherries and are high in sodium.

Medical Uses and/or Benefits Anti-inflammatory effects. In a series of laboratory studies conducted from 1998 through 2001, researchers at the Bioactive Natural Products Laboratory in the Department of Horti- culture and National Food Safety and Toxicology Center at Michigan State University dis- covered that the anthocyanins (red pigments) in tart cherries effectively block the activity of two enzymes, COX-1 and COX-2, essential for the production of prostaglandins, which are natural chemicals involved in the inflammatory response (which includes redness, heat, swelling, and pain). In other words, the anthocyanins appeared to behave like aspirin and other traditional nonsteroidal anti-inflammatory drugs, such as ibuprofen and naproxen. In 2004, scientists at the USDA Human Nutrition Research Center in Davis, California, released data from a study showing that women who ate 45 bing (sweet) cherries at breakfast each morning had markedly lower blood levels of uric acid, a by-product of protein metabolism linked to pain and inflammation, during an acute episode of gout (a form of arthritis). The women in the study also had lower blood levels of C-reactive protein and nitric acid, two other chemicals linked to inflammation. These effects are yet to be proven in larger studies with a more diverse group of subjects.... cherries

Chromium

A metallic element that has a vital role in the activities of several enzymes in the body.

Chromium is required only in minute amounts (see trace elements).

In excess, chromium is toxic and produces inflammation of the skin and, if inhaled, damages the nose and may increase the risk of lung cancer.... chromium

Copper

A metallic element that is an essential part of several enzymes. Copper is needed by the body only in minute amounts (see trace elements). Copper excess may result from the rare inherited disorder Wilson’s disease.... copper

Necrotizing Fasciitis

A rare, serious infection of tissues beneath the skin by a type of streptococcal bacterium.

Necrotizing fasciitis is most likely to occur as a complication following surgery.

The initial symptoms are inflammation and blistering of the skin.

The infection spreads very rapidly, and the bacteria release enzymes and toxins that can cause extensive destruction of deeper tissues and damage internal organs.

Urgent treatment with antibiotic drugs and removal of all infected tissue are essential.

The infection is life-threatening.... necrotizing fasciitis

Nickel

A metallic element that is present in the body in minute amounts. Nickel is thought to activate certain enzymes (substances that promote biochemical reactions), and it may also play a part in stabilizing chromosomal material in the nuclei of cells.

Exposure to nickel may cause dermatitis (inflammation of the skin). Lung cancer has been reported in workers in nickel refineries.... nickel

Coleus

Coleus spp.

Lamiaceae

The genus Coleus of the family Lamiaceae (Labiatae) comprises a number of herbaceous medicinal plants which are particularly employed in home remedies for various ailments. Three species are most popular and commonly cultivated. They are Coleus aromaticus, C. vettiveroides and C. forkoshlii.

1. Coleus aromaticus Benth. syn. C. amboinicus Lour., Plectranthus amboinicus (Lour.) Spreng.

Eng: Country borage, Indian borage;

San: Karpuravalli, Sugandhavalakam;

Hin: Patharchur;

Ben: Paterchur;

Mal: Panikkurkka, kannikkurkka;

Tam: Karpuravalli;

Kan: karpurahalli;

Tel: Sugandhavalkam.

It is found through out the tropics and cultivated in homestead gardens. It is a large succulent aromatic perennial herb with hispidly villous or tomentose fleshy stem. Leaves are simple, opposite, broadly ovate, crenate and fleshy. Flowers are pale purplish in dense whorls at distant intervals in a long slender raceme. Fruits are orbicular or ovoid nutlets. The leaves are useful in cephalagia, otalgia, anorexia, dyspepsia, flatulence, colic, diarrhoea, cholera, halitosis, convulsions, epilepsy, cough, asthma, hiccough, bronchitis, strangury, hepatopathy and malarial fever (Warrier et al,1995).

2. Coleus vettiveroides K.C. Jacob, syn. Plectranthus vettiveroides (Jacob) Singh & Sharma.

San: Valakam, Hriberam;

Hin: Valak;

Mal: Iruveli;

Tam: Karuver;

Tel: Karuveru,

It is seen in tropical countries and cultivated in gardens. It is a small profusely branched, succulent aromatic herb with quadrangular stems and branches and deep straw coloured aromatic roots. Leaves are glandular hairy, broadly ovate with dentate margins and prominent veins on the bark. Blue flowers are borne on terminal racemes. Fruits are nutlets. The whole plant is useful in hyperdipsia, vitiated conditions of pitta, burning sensation, strangury, leprosy, skin diseases, leucoderma, fever, vomiting, diarrhoea, ulcers and as hair tonic.

3. Coleus forskohlii Briq. syn. C. barbatus Benth.

Hin: Garmai

Kan: Maganiberu, Makandiberu

Guj: Maimul

It is a perennial aromatic herb grown under tropical to temperate conditions for its carrot-like tubers which are used as condiments in the preparation of pickles. Its tuberous roots are an exclusive source of a diterpenoid forskolin which has the unique property of activating almost all hormone sensitive adenylate cyclase enzymes in a biological system. It is useful in the treatment of congestive heart failure, glaucoma, asthma, cancer and in preventing immature greying of hair (Hegde,1997).

Agrotechnology: The Coleus group of plants grows in tropical to subtropical situations and in warm temperate climatic zone on mountains of India, Nepal, Burma, Sri Lanka, Thailand and Africa. It comes up well on the sun exposed dry hill slopes from 300m to 1800m altitude. A well drained medium fertile soil is suitable for its cultivation. it is propagated vegetatively through stem and root cuttings. Vine cuttings to a length of 10-15cm from the top portion are most ideal for planting. The land is ploughed or dug to a depth of 15-20cm and ridges are formed 30cm apart. Vine cuttings are planted on the ridges at 30cm spacing after incorporating basal manure. 10t of FYM and NPK at 50:50:50kg/ha are incorporated into the soil. Top dressing of N and K is also suggested for improved yields. Weeding and earthing up at 45 days after planting along with topdressing is highly beneficial. Bacterial wilt and root knot nematode are reported in the crop. Drenching the soil with fungicide, deep ploughing in the summer, burning of crop residues and crop rotation are helpful to tide over the disease and pest problem. The crop can be harvested after 5-6 months.

Properties and activity: The medicinal property of Coleus amboinicus is attributed to codeine, carvacrol, flavones, aromatic acids and tannins present in the plant. The essential oil from the plant contains carvacrol, ethyl salicylate, thymol, eugenol and chavicol. Leaves also contain cirsimaritin, -sitosterol- -D-glucoside and oxalacetic acid. Leaves are bitter, acrid, thermogenic, aromatic, anodyne, appetising, digestive, carminative, stomachic, anthelmintic, constipating, deodorant, expectorant, diuretic and liver tonic.

Coleus vettiveroides is bitter, cooling, diuretic, trichogenous and antipyretic.

Coleus forskohlii roots are rich in diterpenoids like forskolin, coleonols, coleons, barbatusin, cyclobutatusin, coleosol, coleol, coleonone, deoxycoleonol, 7-deacetylforskolin and 6-acetyl-7-deacetylforskolin. Its root is spasmolytic, CNS active, hypothermic and diuretic. Forskolin is bronchodialative and hypotensive (Hussain et al,1992). Forskolin is also useful in preventing the clotting of blood platelets, in reducing intraocular pressure in glaucoma and as an aid to nerve regeneration following trauma (Sharma, 1998)... coleus

Orlistat

An anti-obesity drug used with a slimming diet to treat severe obesity. Unlike appetite suppressants, orlistat acts on the gastrointestinal tract, preventing the digestion of fats by lipases (pancreatic enzymes). Instead of being absorbed, the fats pass out of the body in faeces.

Side effects are gastrointestinal and can be minimized by reducing fat intake.

Flatulence and faecal urgency are common.

Deficiencies of fat-soluble vitamins may develop with prolonged use.... orlistat

Proteins

Large molecules consisting of hundreds or thousands of amino acids linked into long chains. Proteins may also contain sugars (glycoproteins) and lipids (lipoproteins). There are 2 main types of proteins. Fibrous proteins are insoluble and form the structural basis of many body tissues. Globular proteins are soluble and include all enzymes, many hormones, and some blood proteins, such as haemoglobin.... proteins

Secretion

The manufacture and release by a cell, gland, or organ of substances, (such as enzymes) needed for metabolic processes elsewhere in the body.... secretion

Simvastatin

A lipid-lowering drug that acts on the liver enzymes that produce cholesterol.

It may cause bowel upsets, headaches, and muscle pains.... simvastatin

Sperm

The male sex cell, which is responsible for fertilization of the female ovum. Inside the head of the sperm is genetic material, while the acrosome that caps the head contains enzymes that enable sperm to penetrate the ovum’s outer covering. The tail of the sperm propels it.

Sperm are produced within the seminiferous tubules of the testes and mature in the epididymis.

Production and development of sperm cells is dependent on testosterone and on gonadotrophin hormones secreted by the pituitary gland.

Sperm production starts at puberty.... sperm

Corn

(Hominy) See also Flour, Vegetable oils, Wheat cereals.

Nutritional Profile Energy value (calories per serving): Moderate Protein: Moderate Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: High Sodium: Low Major vitamin contribution: Vitamin A (in yellow corn), B vitamins, vitamin C Major mineral contribution: Potassium

About the Nutrients in This Food Like other grains, corn is a high-carbohydrate, high-fiber food. Eighty-one percent of the solid material in the corn kernel consists of sugars, starch, and dietary fiber, including insoluble cellulose and noncarbohydrate lignin in the seed covering and soluble pectins and gums in the kernel.* Corn has small amounts of vitamin A, the B vitamin folate, and vitamin C. Corn is a moderately good source of plant proteins, but zein (its major protein) is deficient in the essential amino acids lysine, cystine, and tryptophan. Corn is low in fat and its oils are composed primarily of unsaturated fatty acids. Yellow corn, which gets its color from the xanthophyll pigments lutein and zeaxanthin plus the vitamin A-active pigments carotene and cryptoxanthin, contains a little vitamin A; white corn has very little. One fresh ear of yellow corn, 5.5– 6.5 inches long, has three grams dietar y fiber, one gram fat (0.1 g saturated fat, 0.3 g monounsaturated fat, 0.4 mg polyunsaturated fat), 137 IU vitamin A (6 percent of the R DA for a woman, 5 percent of the R DA for a man), 34 mcg folate (9 percent of the R DA), and 5 mg vitamin C (7 percent of the R DA for a woman, 6 percent of the R DA for a man). * The most plent iful sugar in sweet corn is glucose; hydrolysis (chemical splitt ing) of corn starch is t he principal indust rial source of glucose. Since glucose is less sweet t han sucrose, sucrose and fructose are added to commercial corn syrup to make it sweeter.

The Most Nutritious Way to Serve This Food With beans (which are rich in lysine) or milk (which is rich in lysine and tryptophan), to complement the proteins in corn. With meat or a food rich in vitamin C, to make the iron in corn more useful.

Diets That May Restrict or Exclude This Food Low-fiber diet

Buying This Food Look for: Cobs that feel cool or are stored in a refrigerated bin. Keeping corn cool helps retain its vitamin C and slows the natural conversion of the corn’s sugars to starch. Choose fresh corn with medium-sized kernels that yield slightly when you press them with your fingertip. Very small kernels are immature; very large ones are older and will taste starchy rather than sweet. Both yellow and white kernels may be equally tasty, but the husk of the corn should always be moist and green. A dry yellowish husk means that the corn is old enough for the chlorophyll pigments in the husk to have faded, letting the carotenes underneath show through.

Storing This Food Refrigerate fresh corn. At room temperature, fresh-picked sweet corn will convert nearly half its sugar to starch within 24 hours and lose half its vitamin C in four days. In the refrigera- tor, it may keep all its vitamin C for up to a week and may retain its sweet taste for as long as ten days.

Preparing This Food Strip off the husks and silk, and brush with a vegetable brush to get rid of clinging silky threads. R inse the corn briefly under running water, and plunge into boiling water for four to six minutes, depending on the size of the corn.

What Happens When You Cook This Food Heat denatures (breaks apart) the long-chain protein molecules in the liquid inside the corn kernel, allowing them to form a network of protein molecules that will squeeze out moisture and turn rubbery if you cook the corn too long. Heat also allows the starch granules inside the kernel to absorb water so that they swell and eventually rupture, releasing the nutrients inside. When you cook corn, the trick is to cook it just long enough to rupture its starch granules while keeping its protein molecules from turning tough and chewy. Cooking fresh corn for several minutes in boiling water may destroy at least half of its vitamin C. At Cornell University, food scientists found that cooking fresh corn in the microwave oven (two ears/without water if very fresh/4 minutes/600 –700 watts) preserves most of the vitamin C.

How Other Kinds of Processing Affect This Food Canning and freezing. Canned corn and frozen corn both have less vitamin C than fresh- cooked corn. The vitamin is lost when the corn is heated during canning or blanched before freezing to destroy the natural enzymes that would otherwise continue to ripen it. Blanch- ing in a microwave oven rather than in boiling water can preserve the vitamin C in frozen corn (see above). Milling. Milling removes the hull and germ from the corn kernel, leaving what is called hominy. Hominy, which is sometimes soaked in wood ash (lye) to increase its calcium con- tent, can be dried and used as a cereal (grits) or ground into corn flour. Coarsely ground corn flour is called cornmeal. Processed corn cereals. All processed, ready-to-eat corn cereals are much higher in sodium and sugar than fresh corn. Added calcium carbonate. Pellagra is a niacin-deficiency disease that occurs most com- monly among people for whom corn is the staple food in a diet lacking protein foods with the essential amino acid tryptophan, which can be converted to niacin in the human body. Pellagra is not an inevitable result of a diet high in corn, however, since the niacin in corn can be made more useful by soaking the corn in a solution of calcium carbonate (lime) and water. In Mexico, for example, the corn used to make tortillas is boiled in a dilute solution of calcium carbonate (from shells or limestone) and water, then washed, drained, and ground. The alkaline bath appears to release the bound niacin in corn so that it can be absorbed by the body.

Medical Uses and/or Benefits As a wheat substitute in baking. People who are allergic to wheat or cannot tolerate the glu- ten in wheat flour or wheat cereals can often use corn flour or hominy instead. Bath powder. Corn starch, a fine powder refined from the endosperm (inner part) of the corn kernel, can be used as an inexpensive, unperfumed body or face powder. Because it absorbs oils, it is also used as an ingredient in dry shampoos.

Adverse Effects Associated with This Food Allergic reaction. According to the Merck Manual, corn is one of the 12 foods most likely to trigger the classic food allergy symptoms: hives, swelling of the lips and eyes, and upset stomach. The others are berries (blackberries, blueberries, raspberries, strawberries), choco- late, eggs, fish, legumes (green peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see wheat cer ea ls).... corn

Acrosome

n. the caplike structure on the front end of a spermatozoon. It breaks down just before fertilization (the acrosome reaction), releasing a number of enzymes that assist penetration between the follicle cells that still surround the ovum. Failure of the acrosome reaction is a cause of male infertility (see also andrology).... acrosome

Cucumbers

(Pickles)

Nutritional Profile Energy value (calories per serving): Low Protein: Moderate Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Low Sodium: Low Major vitamin contribution: Vitamin C Major mineral contribution: Iron, potassium

About the Nutrients in This Food Cucumbers are mostly (96 percent) water. Their dietary fiber is unique in that it can hold up to 30 times its weight in water compared to the fiber in wheat bran, which holds only four to six times its weight in water. But cucumbers have so much water that there is little room for anything else. Two ounces of fresh cucumber slices has less than one gram dietary fiber—and no significant amounts of vitamins or minerals.

The Most Nutritious Way to Serve This Food Raw, fresh-sliced, with the unwaxed skin.

Diets That May Restrict or Exclude This Food Antiflatulence diet Low-fiber diet

Buying This Food Look for: Firm cucumbers with a green, unwaxed skin. In the natural state, the skin of the cucumber is neither shiny nor deep green, characteristics it picks up when the cucumber is waxed to keep it from losing moisture during shipping and storage. The wax is edible, but some people prefer not to eat it, which means missing out on fiber. To get your cucumbers without wax, ask for pickling cucumbers, and note the difference in color and texture. Choose cucumbers with a clean break at the stem end; a torn, uneven stem end means that the cucumber was pulled off the vine before it was ready. Technically, all the cucum- bers we buy are immature; truly ripe cucumbers have very large, hard seeds that make the vegetable unpalatable. Avoid: Cucumbers with yellowing skin; the vegetable is so old that its chlorophyll pigments have faded and the carotenes underneath are showing through. Puff y, soft cucumbers are also past their prime.

Storing This Food Store cucumbers in the refrigerator and use them as soon as possible. The cucumber has no starch to convert to sugar as it ages, so it won’t get sweeter off the vine, but it will get softer as the pectins in its cell wall absorb water. You can make a soft cucumber crisp again by slic- ing it and soaking the slices in salted water. By osmotic action, the unsalted, lower-density water in the cucumber’s cells will flow out across the cell walls out into the higher-density salted water and the cucumber will feel snappier.

Preparing This Food R inse the cucumber under cold, running water. Check to see if the cucumber has been waxed by scraping the skin gently with the tip of your fingernail and then looking for waxy resi- due under the nail. If the skin is waxed, you can peel it off—but not until you are ready to use it, since slicing the cucumber tears its cell walls, releasing an enzyme that oxidizes and destroys vitamin C.

How Other Kinds of Processing Affect This Food Pickling. Cucumbers are not a good source of iron, but pickles may be. If processed in iron vats, the pickles have picked up iron and will give you about 1 mg per pickle. Pickles made in stainless steel vats have no iron, nor do pickles made at home in glass or earthenware.

Adverse Effects Associated with This Food Intestinal gas. Some sensitive people find cucumbers “gassy.” Pickling, marinating, and heating, which inactivate enzymes in the cucumber, may reduce this gassiness for certain people—although others find pickles even more upsetting than fresh cucumbers.

Food/Drug Interactions False-positive test for occult blood in the stool. The active ingredient in the guaiac slide test for hidden blood in feces is alphaguaiaconic acid, a chemical that turns blue in the presence of blood. Alphaguaiaconic acid also turns blue in the presence of peroxidase, a chemical that occurs naturally in cucumbers. Eating cucumbers in the 72 hours before taking the guaiac test may produce a false-positive result in people who not actually have any blood in their stool. Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyramine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. If you eat a food, such as pickles, containing tyramine while you are taking an M AO inhibitor, you cannot effectively eliminate the tyramine from your body. The result may be a hypertensive crisis.... cucumbers

Cucumis Sativus

Linn.

Family: Cucurbitaceae.

Habitat: Cultivated for its edible fruits which are usually used as salad vegetable.

English: Cucumber.

Ayurvedic: Trapusha, Traapusha, Trapushi, Tiktakarkatikaa (bitter var.).

Unani: Khiyaar, Khiraa.

Siddha/Tamil: Vellarikkai.

Folk: Khiraa.

Action: Seed—used in dysuria, irritation of the urinary tract, cystitis. Reduces specific gravity of urine. Also used for tapeworms.

Cucumber contains rutin; seeds glu- cosides including cucurbitaside; leaves free cucurbitasides B & C, ferredox- in, alpha-spinasterol. Free and bound sterols are found in seedlings and in male and female flowers.

Presence of proteolytic enzymes, ascorbic acid oxidase and succinic and malic dehydrogenases has been reported.

Dosage: Seed—3-6 g powder; fruit juice—25-50 ml. (CCRAS.)... cucumis sativus

Alpha-1 Antitrypsin Deficiency

a rare inherited disorder associated with lung and liver diseases. It is caused by a deficiency of ?1-antitrypsin, a plasma globulin whose role is to inhibit the action of various protease enzymes (including trypsin), which protect the lungs against the action of the enzyme neutrophil elastase. This results in degradation of the *elastin of alveolar walls as well as structural proteins in other tissues, including the liver. Although many patients present in childhood, the disorder can occur in adults as well.... alpha-1 antitrypsin deficiency

Aminopeptidase

n. any one of several enzymes in the intestine that cause the breakdown of a *peptide, removing an amino acid.... aminopeptidase

Cucumis Trigonus

Roxb.

Synonym: C. pseudo-colocynthis Royle.

C.callosus (Rottl.) Congn. Bryonia callosa Rottl.

Habitat: Wild throughout the drier upland tracts of India. Ayurvedic: Indravaaruni (var.). Siddha/Tamil: Kattutumatti. Folk: Vishlumbha, Bhakuraa.

Action: Pulp of fruit—drastic purgative. Decoction of roots— milder in purgative action. Seeds— cooling, astringent; useful in bilious disorders. The fruit is used as a substitute for Colocynth.

The fruits contain steroid and tri- terpenoid compounds, cucurbitacin B and proteolytic enzymes. EtOH extract exhibits analgesic and anti- inflammatory activity; stimulates isolated uterus of guinea pigs.... cucumis trigonus

Curcuma Longa

Linn.

Synonym: C. domestica Valeton.

Family: Zingiberaceae.

Habitat: Cultivated all over India, particularly in West Bengal, Tamil Nadu and Maharashtra.

English: Turmeric.

Ayurvedic: Haridraa, Priyaka, Haridruma, Kshanda, Gauri, Kaanchani, Krimighna, Varavarni- ni, Yoshitapriyaa, Hattavilaasini, Naktaahvaa, Sharvari.

Unani: Zard Chob.

Action: Anti-inflammatory, cholagogue, hepatoprotective, blood-purifier, antioxidant, detoxi- fier and regenerator of liver tissue, antiasthmatic, anti-tumour, anticu- taneous, antiprotozoal, stomachic, carminative. Reduces high plasma cholesterol. Antiplatelet activity offers protection to heart and vessels. Also protects against DNA damage in lymphocytes.

Key application: In dyspeptic conditions. (German Commission E, ESCOP, WHO.) As antiinflammatory, stomachic. (Indian Herbal Pharmacopoeia.)

The rhizomes gave curcuminoids, the mixture known as curcumin, consisting of atleast four phenolic diaryl- heptanoids, including curcumin and monodesmethoxycurcumin; volatile oil (3-5%), containing about 60% of turmerones which are sesquiterpene ketones, and bitter principles, sugars, starch, resin.

Curcumin related phenolics possess antioxidant, anti-inflammatory, gastroprotective and hepatoprotective activities. The antioxidant activity of curcumin is comparable to standard antioxidants—vitamin C and E, BHA and BHT.

The volatile oil, also curcumin, exhibited anti-inflammatory activity in a variety of experimental models (the effects were comparable to those of cortisone and phenylbutazone). Used orally, curcumin prevents the release of inflammatory mediators. It depletes nerve endings of substance P, the neu- rotransmitter of pain receptors.

Curcumin's cholesterol-lowering actions include interfering with intestinal cholesterol uptake, increasing the conversion of cholesterol into bile acids and increasing the excretion of bile acids via its choleretic effects.

Curcuminoids prevent the increases in liver enzymes, SGOT and SGPT; this validates the use of turmeric as a he- patoprotective drug in liver disorders. Curlone, obtained from the dried rhizome, is used against hepatitis.

Turmeric and curcumin increase the mucin content of the stomach and exert gastroprotective effects against stress, alcohol, drug-induced ulcer formation. (Curcumin at doses of 100 mg/kg weight exhibited ulcerogenic activity in rats.)

The ethanolic extract of the rhizome exhibited blood sugar lowering activity in alloxan-induced diabetic rats.

Piperine (a constituent of black and long pepper) enhances absorption and bioavailability of curcumin.

Dosage: Cured rhizome—1-3 g powder. (API Vol. I.)... curcuma longa

Antimetabolite

n. any one of a group of drugs that interfere with the normal metabolic processes within cells by combining with the enzymes responsible for them. Some drugs used in the treatment of cancer, e.g. *cytarabine *fluorouracil, *methotrexate, and *mercaptopurine, are antimetabolites that prevent cell growth by interfering with enzyme reactions essential for nucleic acid synthesis. For example, fluorouracil inhibits the enzyme thymidylate synthetase. Side-effects of antimetabolites can include blood cell disorders and digestive disturbances. See also chemotherapy; cytotoxic drug.... antimetabolite

Drink More Rhodiola Tea!

Rhodiola tea is a delicious, mellow herbal tea. With its plant growing in cold, mountainous regions, this tea has various important health benefits. Find out more about rhodiola tea! About Rhodiola Tea Rhodiola tea is made from the rhodiola rosea plant. It grows in cold, mountainous areas, such as the Arctic, the mountains of Central Asia, the Rocky Mountains, and European mountains (Alps, Pyrenees, Carpathian Mountains). It is also known by the names golden root, rose root, Aaron’s rod, arctic root, king’s crown, lignum rhodium, and orpin rose. Rhodiola is a perennial plant with spikes of green leaves. The shoots can grow up to 35cm, and each bear a single yellow flower, which blooms during the Arctic summer. How to prepare Rhodiola Tea It takes awhile to prepare rhodiola tea, but it should be worth it. To enjoy a cup, you have to follow a few steps. For one cup, you need about 5 g of rhodiola root. Put that into a cup of freshly boiled water and let it brew for about 4 hours. Once the time is up, filter the liquid and your tea. Add honey or fruit juice if you want to sweeten the flavor. Rhodiola Tea Constituents Rhodiola rosea has lots of active constituents. Some of the important ones include rosavin, rosin, rosarin, rhodioloside, tyrosol, and salidroside. In its composition, we can also find phenolic antioxidants: proanthocyanidins, quercetin, gallic acid, chlorogenic acid, kaempferol. As rhodiola tea is made from the rhodiola rosea plant, these constituents are transferred to the tea, as well. Rhodiola Tea Benefits The most important health benefits of rhodiola tea are related to your mental state. It helps if you’re feeling depressed; it improves your mood and fills you with energy. It also reduces fatigue and stress, and it’s bound to make you feel more relaxed. Generally, it helps enhance your mental functions, including your memory. By reducing stress levels, rhodiola tea also reduces the amount of stress hormones which can cause heart problems. Rhodiola tea regulates your heartbeats and fights against heart arrhythmias. Men can drink rhodiola tea if they’ve got erectile dysfunction; this tea is often included in the treatment. It’s useful for women too, as it helps lose weight and can therefore be drunk when on a diet. At the same time, it can also help with anaemia. You should drink rhodiola tea to help you with muscle recovery after exhaustive exercising. This tea increases the level of enzymes, RNA, and proteins needed.Rhodiola tea can help if you’ve got a cold or the flu. Interestingly, it will also help you if you’ve got altitude sickness. Rhodiola Tea Side Effects Even if rhodiola tea has so many health benefits, there are a few side effects you should be careful with, too. It is best not to be consumed by pregnant women, or those who are breastfeeding. In both cases, rhodiola tea can affect the baby. Even if rhodiola tea is used to treat depression, it is not good when it comes to bipolar disorder. Make sure you talk with your doctor first if you’re not sure whether you should drink rhodiola tea or not. Also, as rhodiola tea is used to enhance your energy, you should not drink it in the evening or even worse, before going to bed. It might lead to insomnia. Rhodiola tea should be on your list of ‘teas to drink’. You don’t have to worry when on a diet, as it will also help you lose weight. Just make sure you won’t get any side effects and you’re safe to drink it!... drink more rhodiola tea!

Drug Interactions

Many patients are on several prescribed drugs, and numerous medicines are available over the counter, so the potential for drug interaction is large. A drug may interact with another by inhibiting its action, potentiating its action, or by simple summation of effects.

The interaction may take place:

(1) Prior to absorption or administration – for example, antacids bind tetracycline in the gut and prevent absorption.

(2) By interfering with protein binding – one drug may displace another from binding sites on plasma proteins. The action of the displaced drug will be increased because more drug is now available; for example, anticoagulants are displaced by analgesics.

(3) During metabolism or excretion of the drug – some drugs increase or decrease the activity of liver enzymes which metabolise drugs, thus affecting their rate of destruction; for example, barbiturates, nicotine, and alcohol all activate hepatic enzymes. Altering the pH of urine will affect the excretion of drugs via the kidney.

(4) At the drug receptor – one drug may displace another at the receptor, affecting its e?cacy or duration of action.... drug interactions

Apolipoprotein

n. any one of a family of proteins that form the protein components of *lipoproteins, which transport hydrophobic lipid molecules in the plasma. Individual members of the family are designated by the abbreviation ‘Apo’ followed by a capital letter. Apolipoproteins have a range of molecular weights and perform a variety of functions during the life cycle of the lipoproteins in which they are found. These include acting as ligands for the binding of enzymes (ApoB) and as cofactors for the action of other enzymes (ApoA and ApoC).... apolipoprotein

Beta-lactam Antibiotic

one of a group of drugs that includes the *penicillins and the *cephalosporins. All have a four-membered beta-lactam ring as part of their molecular structure. Beta-lactam antibiotics function by interfering with the growth of the cell walls of multiplying bacteria. Bacteria become resistant to these antibiotics by producing beta-lactamases, enzymes (such as *penicillinase) that disrupt the beta-lactam ring. To counteract this, beta-lactamase inhibitors (e.g. *clavulanic acid) may be added to beta-lactam antibiotics. For example, co-amoxiclav is a mixture of *amoxicillin and clavulanic acid.... beta-lactam antibiotic

Biotin

n. a vitamin of the B complex that is an essential coenzyme for several carboxylase enzymes involved in fatty acid synthesis, *gluconeogenesis, and the metabolism of branched-chain amino acids. A biotin deficiency is extremely rare in humans; it can be induced by eating large quantities of raw egg white, which contains a protein – avidin – that combines with biotin, making it unavailable to the body. Rich sources of the vitamin are egg yolk and liver. There are no known reports of biotin toxicity.... biotin

Catalyst

n. a substance that alters the rate of a chemical reaction but is itself unchanged at the end of the reaction. The catalysts of biochemical reactions are the *enzymes.... catalyst



Recent Searches