Nutritional Profile Energy value (calories per serving): Moderate Protein: High Fat: Moderate Saturated fat: High Cholesterol: Moderate Carbohydrates: None Fiber: None Sodium: Low Major vitamin contribution: B vitamins Major mineral contribution: Iron, phosphorus, zinc
About the Nutrients in This Food Like fish, pork, poultry, milk, and eggs, beef has high-quality proteins, with sufficient amounts of all the essential amino acids. Beef fat is slightly more highly saturated than pork fat, but less saturated than lamb fat. All have about the same amount of cholesterol per serving. Beef is an excellent source of B vitamins, including niacin, vitamin B6, and vitamin B12, which is found only in animal foods. Lean beef pro- vides heme iron, the organic iron that is about five times more useful to the body than nonheme iron, the inorganic form of iron found in plant foods. Beef is also an excellent source of zinc. One four-ounce serving of lean broiled sirloin steak has nine grams fat (3.5 g saturated fat), 101 mg cholesterol, 34 g protein, and 3.81 mg iron (21 percent of the R DA for a woman, 46 percent of the R DA for a man). One four-ounce serving of lean roast beef has 16 g fat (6.6 g saturated fat), 92 mg cholesterol, and 2.96 mg iron (16 percent of the R DA for a woman, 37 percent of the R DA for a man).
The Most Nutritious Way to Serve This Food With a food rich in vitamin C. Ascorbic acid increases the absorption of iron from meat. * These values apply to lean cooked beef.
Diets That May Restrict or Exclude This Food Controlled-fat, low-cholesterol diet Low-protein diet (for some forms of kidney disease)
Buying This Food Look for: Fresh, red beef. The fat should be white, not yellow. Choose lean cuts of beef with as little internal marbling (streaks of fat) as possible. The leanest cuts are flank steak and round steak; rib steaks, brisket, and chuck have the most fat. USDA grading, which is determined by the maturity of the animal and marbling in meat, is also a guide to fat content. U.S. prime has more marbling than U.S. choice, which has more marbling than U.S. good. All are equally nutritious; the difference is how tender they are, which depends on how much fat is present. Choose the cut of meat that is right for your recipe. Generally, the cuts from the cen- ter of the animal’s back—the rib, the T-Bone, the porterhouse steaks—are the most tender. They can be cooked by dry heat—broiling, roasting, pan-frying. Cuts from around the legs, the underbelly, and the neck—the shank, the brisket, the round—contain muscles used for movement. They must be tenderized by stewing or boiling, the long, moist cooking methods that break down the connective tissue that makes meat tough.
Storing This Food Refrigerate raw beef immediately, carefully wrapped to prevent its drippings from contami- nating other foods. Refrigeration prolongs the freshness of beef by slowing the natural multi- plication of bacteria on the meat surface. Unchecked, these bacteria will convert proteins and other substances on the surface of the meat to a slimy film and change meat’s sulfur-contain- ing amino acids methionine and cystine into smelly chemicals called mercaptans. When the mercaptans combine with myoglobin, they produce the greenish pigment that gives spoiled meat its characteristic unpleasant appearance. Fresh ground beef, with many surfaces where bacteria can live, should be used within 24 to 48 hours. Other cuts of beef may stay fresh in the refrigerator for three to five days.
Preparing This Food Trim the beef carefully. By judiciously cutting away all visible fat you can significantly reduce the amount of fat and cholesterol in each serving. When you are done, clean all utensils thoroughly with soap and hot water. Wash your cutting board, wood or plastic, with hot water, soap, and a bleach-and-water solution. For ultimate safety in preventing the transfer of microorganisms from the raw meat to other foods, keep one cutting board exclusively for raw meats, fish, and poultry, and a second one for everything else. Finally, don’t forget to wash your hands.
What Happens When You Cook This Food Cooking changes the appearance and flavor of beef, alters nutritional value, makes it safer, and extends its shelf life. Browning meat after you cook it does not “seal in the juices,” but it does change the fla- vor by caramelizing sugars on the surface. Because beef’s only sugars are the small amounts of glycogen in the muscles, we add sugars in marinades or basting liquids that may also con- tain acids (vinegar, lemon juice, wine) to break down muscle fibers and tenderize the meat. (Browning has one minor nutritional drawback. It breaks amino acids on the surface of the meat into smaller compounds that are no longer useful proteins.) When beef is cooked, it loses water and shrinks. Its pigments, which combine with oxygen, are denatured (broken into fragments) by the heat and turn brown, the natural color of well-done meat. At the same time, the fats in the beef are oxidized. Oxidized fats, whether formed in cooking or when the cooked meat is stored in the refrigerator, give cooked meat a character- istic warmed-over flavor. Cooking and storing meat under a blanket of antioxidants—catsup or a gravy made of tomatoes, peppers, and other vitamin C-rich vegetables—reduces the oxidation of fats and the intensity of warmed-over flavor. Meat reheated in a microwave oven also has less warmed-over flavor. An obvious nutritional benefit of cooking is the fact that heat lowers the fat content of beef by liquif ying the fat so it can run off the meat. One concrete example of how well this works comes from a comparison of the fat content in regular and extra-lean ground beef. According to research at the University of Missouri in 1985, both kinds of beef lose mass when cooked, but the lean beef loses water and the regular beef loses fat and cholesterol. Thus, while regular raw ground beef has about three times as much fat (by weight) as raw ground extra-lean beef, their fat varies by only 5 percent after broiling. To reduce the amount of fat in ground beef, heat the beef in a pan until it browns. Then put the beef in a colander, and pour one cup of warm water over the beef. Repeat with a second cup of warm water to rinse away fat melted by heating the beef. Use the ground beef in sauce and other dishes that do not require it to hold together. Finally, cooking makes beef safer by killing Salmonella and other organisms in the meat. As a result, cooking also serves as a natural preservative. According to the USDA, large pieces of fresh beef can be refrigerated for two or three days, then cooked and held safely for another day or two because the heat of cooking has reduced the number of bacteria on the surface of the meat and temporarily interrupted the natural cycle of deterioration.
How Other Kinds of Processing Affect This Food Aging. Hanging fresh meat exposed to the air, in a refrigerated room, reduces the moisture content and shrinks the meat slightly. As the meat ages enzymes break down muscle pro- teins, “tenderizing” the beef. Canning. Canned beef does not develop a warmed-over flavor because the high tempera- tures in canning food and the long cooking process alter proteins in the meat so that they act as antioxidants. Once the can is open, however, the meat should be protected from oxygen that will change the flavor of the beef. Curing. Salt-curing preserves meat through osmosis, the physical reaction in which liquids flow across a membrane, such as the wall of a cell, from a less dense to a more dense solution. The salt or sugar used in curing dissolves in the liquid on the surface of the meat to make a solution that is more dense than the liquid inside the cells of the meat. Water flows out of the meat and out of the cells of any microorganisms living on the meat, killing the microor- ganisms and protecting the meat from bacterial damage. Salt-cured meat is much higher in sodium than fresh meat. Freezing. When you freeze beef, the water inside its cells freezes into sharp ice crystals that can puncture cell membranes. When the beef thaws, moisture (and some of the B vitamins) will leak out through these torn cell walls. The loss of moisture is irreversible, but some of the vitamins can be saved by using the drippings when the meat is cooked. Freezing may also cause freezer burn—dry spots left when moisture evaporates from the surface of the meat. Waxed freezer paper is designed specifically to hold the moisture in meat; plastic wrap and aluminum foil are less effective. NOTE : Commercially prepared beef, which is frozen very quickly at very low temperatures, is less likely to show changes in texture. Irradiation. Irradiation makes meat safer by exposing it to gamma rays, the kind of high- energy ionizing radiation that kills living cells, including bacteria. Irradiation does not change the way meat looks, feels or tastes, or make the food radioactive, but it does alter the structure of some naturally occurring chemicals in beef, breaking molecules apart to form new com- pounds called radiolytic products (R P). About 90 percent of R Ps are also found in nonirradiated foods. The rest, called unique radiolytic products (UR P), are found only in irradiated foods. There is currently no evidence to suggest that UR Ps are harmful; irradiation is an approved technique in more than 37 countries around the world, including the United States. Smoking. Hanging cured or salted meat over an open fire slowly dries the meat, kills micro- organisms on its surface, and gives the meat a rich, “smoky” flavor that varies with the wood used in the fire. Meats smoked over an open fire are exposed to carcinogenic chemicals in the smoke, including a-benzopyrene. Meats treated with “artificial smoke flavoring” are not, since the flavoring is commercially treated to remove tar and a-benzopyrene.
Medical Uses and/or Benefits Treating and/or preventing iron deficiency. Without meat in the diet, it is virtually impossible for an adult woman to meet her iron requirement without supplements. One cooked 3.5- ounce hamburger provides about 2.9 mg iron, 16 percent of the R DA for an adult woman of childbearing age. Possible anti-diabetes activity. CLA may also prevent type 2 diabetes, also called adult-onset diabetes, a non-insulin-dependent form of the disease. At Purdue University, rats bred to develop diabetes spontaneously between eight and 10 weeks of age stayed healthy when given CLA supplements.
Adverse Effects Associated with This Food Increased risk of heart disease. Like other foods from animals, beef contains cholesterol and saturated fats that increase the amount of cholesterol circulating in your blood, raising your risk of heart disease. To reduce the risk of heart disease, the National Cholesterol Education Project recommends following the Step I and Step II diets. The Step I diet provides no more than 30 percent of total daily calories from fat, no more than 10 percent of total daily calories from saturated fat, and no more than 300 mg of cholesterol per day. It is designed for healthy people whose cholesterol is in the range of 200 –239 mg/dL. The Step II diet provides 25– 35 percent of total calories from fat, less than 7 percent of total calories from saturated fat, up to 10 percent of total calories from polyunsaturated fat, up to 20 percent of total calories from monounsaturated fat, and less than 300 mg cho- lesterol per day. This stricter regimen is designed for people who have one or more of the following conditions: • Existing cardiovascular disease • High levels of low-density lipoproteins (LDLs, or “bad” cholesterol) or low levels of high-density lipoproteins (HDLs, or “good” cholesterol) • Obesity • Type 1 diabetes (insulin-dependent diabetes, or diabetes mellitus) • Metabolic syndrome, a.k.a. insulin resistance syndrome, a cluster of risk fac- tors that includes type 2 diabetes (non-insulin-dependent diabetes) Increased risk of some cancers. According the American Institute for Cancer Research, a diet high in red meat (beef, lamb, pork) increases the risk of developing colorectal cancer by 15 percent for every 1.5 ounces over 18 ounces consumed per week. In 2007, the National Can- cer Institute released data from a survey of 500,000 people, ages 50 to 71, who participated in an eight-year A AR P diet and health study identif ying a higher risk of developing cancer of the esophagus, liver, lung, and pancreas among people eating large amounts of red meats and processed meats. Food-borne illness. Improperly cooked meat contaminated with E. coli O157:H7 has been linked to a number of fatalities in several parts of the United States. In addition, meats con- taminated with other bacteria, viruses, or parasites pose special problems for people with a weakened immune system: the very young, the very old, cancer chemotherapy patients, and people with HIV. Cooking meat to an internal temperature of 140°F should destroy Salmo- nella and Campylobacter jejuni; 165°F, the E. coli organism; and 212°F, Listeria monocytogenes. Antibiotic sensitivity. Cattle in the United States are routinely given antibiotics to protect them from infection. By law, the antibiotic treatment must stop three days to several weeks before the animal is slaughtered. Theoretically, the beef should then be free of antibiotic residues, but some people who are sensitive to penicillin or tetracycline may have an allergic reaction to the meat, although this is rare. Antibiotic-resistant Salmonella and toxoplasmosis. Cattle treated with antibiotics may pro- duce meat contaminated with antibiotic-resistant strains of Salmonella, and all raw beef may harbor ordinary Salmonella as well as T. gondii, the parasite that causes toxoplasmosis. Toxoplasmosis is particularly hazardous for pregnant women. It can be passed on to the fetus and may trigger a series of birth defects including blindness and mental retardation. Both Salmonella and the T. gondii can be eliminated by cooking meat thoroughly and washing all utensils, cutting boards, and counters as well as your hands with hot soapy water before touching any other food. Decline in kidney function. Proteins are nitrogen compounds. When metabolized, they yield ammonia, which is excreted through the kidneys. In laborator y animals, a sustained high-protein diet increases the flow of blood through the kidneys, accelerating the natural age-related decline in kidney function. Some experts suggest that this may also occur in human beings.
Food/Drug Interactions Tetracycline antibiotics (demeclocycline [Declomycin], doxycycline [ Vibtamycin], methacycline [Rondomycin], minocycline [Minocin], oxytetracycline [Terramycin], tetracycline [Achromycin V, Panmycin, Sumycin]). Because meat contains iron, which binds tetracyclines into com- pounds the body cannot absorb, it is best to avoid meat for two hours before and after taking one of these antibiotics. Monoamine oxidase (MAO) inhibitors. Meat “tenderized” with papaya or a papain powder can interact with the class of antidepressant drugs known as monoamine oxidase inhibi- tors. Papain meat tenderizers work by breaking up the long chains of protein molecules. One by-product of this process is tyramine, a substance that constructs blood vessels and raises blood pressure. M AO inhibitors inactivate naturally occurring enzymes in your body that metabolize tyramine. If you eat a food such as papain-tenderized meat, which is high in tyramine, while you are taking a M AO inhibitor, you cannot effectively eliminate the tyramine from your body. The result may be a hypertensive crisis. Theophylline. Charcoal-broiled beef appears to reduce the effectiveness of theophylline because the aromatic chemicals produced by burning fat speed up the metabolism of the- ophylline in the liver.... beef
Nutritional Profile Energy value (calories per serving): Moderate to high Protein: Moderate to high Fat: Low to high Saturated fat: High Cholesterol: Low to high Carbohydrates: Low Fiber: None Sodium: High Major vitamin contribution: Vitamin A, vitamin D, B vitamins Major mineral contribution: Calcium
About the Nutrients in This Food Cheese making begins when Lactobacilli and/or Streptococci bacteria are added to milk. The bacteria digest lactose (milk sugar) and release lactic acid, which coagulates casein (milk protein) into curds. Rennet (gastric enzymes extracted from the stomach of calves) is added, and the mixture is put aside to set. The longer the curds are left to set, the firmer the cheese will be. When the curds are properly firm, they are pressed to squeeze out the whey (liquid) and cooked. Cooking evaporates even more liquid and makes the cheese even firmer.* At this point, the product is “fresh” or “green” cheese: cottage cheese, cream cheese, farmer cheese. Making “ripe” cheese requires the addition of salt to pull out more moisture and specific organisms, such as Penicil- lium roquefort for Roquefort cheese, blue cheese, and Stilton, or Penicillium cambembert for Camembert and Brie. The nutritional value of cheese is similar to the milk from which it is made. All cheese is a good source of high quality proteins with sufficient amounts of all the essential amino acids. Cheese is low to high in fat, mod- erate to high in cholesterol. * Natural cheese is cheese made direct ly from milk. Processed cheese is natural cheese melted and combined wit h emulsifiers. Pasteurized process cheese foods contain ingredients t hat allow t hem to spread smoot hly; t hey are lower in fat and higher in moisture t han processed cheese. Cholesterol and Saturated Fat Content of Selected Cheeses Mozzarella Source: USDA, Nutritive Value of Foods, Home and Garden Bullet in No. 72 (USDA, 1989). All cheeses, except cottage cheese, are good sources of vitamin A. Orange and yellow cheeses are colored with carotenoid pigments, including bixin (the carotenoid pigment in annatto) and synthetic beta-carotene. Hard cheeses are an excellent source of calcium; softer cheeses are a good source; cream cheese and cottage cheese are poor sources. The R DA for calcium is 1,000 mg for a woman, 1,200 mg for a man, and 1,500 mg for an older woman who is not on hormone- replacement therapy. All cheese, unless otherwise labeled, is high in sodium.
Calcium Content of Cheese | ||
Cheese | Serving | Calcium (mg) |
Blue | oz. | 150 |
Camembert | wedge | 147 |
Cheddar | oz. | 204 |
Cottage cheese | ||
creamed | cup | 135 |
uncreamed | cup | 46 |
Muenster | oz. | 203 |
Pasteurized processed American | oz. | 174 |
Parmesan grated | tbsp. | 69 |
Provolone | oz. | 214 |
Swiss | oz. | 272 |
The Most Nutritious Way to Serve This Food With grains, bread, noodles, beans, nuts, or vegetables to add the essential amino acids miss- ing from these foods, “complete” their proteins, and make them more nutritionally valuable.
Diets That May Restrict or Exclude This Food Antiflatulence diet Controlled-fat, low-cholesterol diet Lactose- and galactose-free diet (lactose, a disaccharide [double sugar] is composed of one unit of galactose and one unit of glucose) Low-calcium diet (for patients with kidney disease) Sucrose-free diet (processed cheese)
Buying This Food Look for: Cheese stored in a refrigerated case. Check the date on the package. Avoid: Any cheese with mold that is not an integral part of the food.
Storing This Food Refrigerate all cheese except unopened canned cheeses (such as Camembert in tins) or grated cheeses treated with preservatives and labeled to show that they can be kept outside the refrigerator. Some sealed packages of processed cheeses can be stored at room temperature but must be refrigerated once the package is opened. Wrap cheeses tightly to protect them from contamination by other microorganisms in the air and to keep them from drying out. Well-wrapped, refrigerated hard cheeses that have not been cut or sliced will keep for up to six months; sliced hard cheeses will keep for about two weeks. Soft cheeses (cottage cheese, ricotta, cream cheese, and Neufchatel) should be used within five to seven days. Use all packaged or processed cheeses by the date stamped on the package. Throw out moldy cheese (unless the mold is an integral part of the cheese, as with blue cheese or Stilton).
Preparing This Food To grate cheese, chill the cheese so it won’t stick to the grater. The molecules that give cheese its taste and aroma are largely immobilized when the cheese is cold. When serving cheese with fruit or crackers, bring it to room temperature to activate these molecules.
What Happens When You Cook This Food Heat changes the structure of proteins. The molecules are denatured, which means that they may be broken into smaller fragments or change shape or clump together. All of these changes may force moisture out of the protein tissue, which is why overcooked cheese is often stringy. Whey proteins, which do not clump or string at low temperatures, contain the sulfur atoms that give hot or burned cheese an unpleasant “cooked” odor. To avoid both strings and an unpleasant odor, add cheese to sauces at the last minute and cook just long enough to melt the cheese.
How Other Kinds of Processing Affect This Food Freezing. All cheese loses moisture when frozen, so semisoft cheeses will freeze and thaw better than hard cheeses, which may be crumbly when defrosted. Drying. The less moisture cheese contains, the less able it is to support the growth of organ- isms like mold. Dried cheeses keep significantly longer than ordinary cheeses.
Medical Uses and/or Benefits To strengthen bones and reduce age-related loss of bone density. High-calcium foods protect bone density. The current recommended dietary allowance (R DA) for calcium is still 800 mg for adults 25 and older, but a 1984 National Institutes of Health (NIH) Conference advisory stated that lifelong protection for bones requires an R DA of 1,000 mg for healthy men and women age 25 to 50 ; 1,000 mg for older women using hormone replacement therapy; and 1,500 mg for older women who are not using hormones, and these recommendations have been confirmed in a 1994 NIH Consensus Statement on optimal calcium intake. A diet with adequate amounts of calcium-rich foods helps protect bone density. Low-fat and no-fat cheeses provide calcium without excess fat and cholesterol. Protection against tooth decay. Studies at the University of Iowa (Iowa City) Dental School confirm that a wide variety of cheeses, including aged cheddar, Edam, Gouda, Monterey Jack, Muenster, mozzarella, Port Salut, Roquefort, Romano, Stilton, Swiss, and Tilsit—limit the tooth decay ordinarily expected when sugar becomes trapped in plaque, the sticky film on tooth surfaces where cavity-causing bacteria flourish. In a related experiment using only cheddar cheese, people who ate cheddar four times a day over a two-week period showed a 20 percent buildup of strengthening minerals on the surface of synthetic toothlike material attached to the root surfaces of natural teeth. Protection against periodontal disease. A report in the January 2008 issue of the Journal of Periodontology suggests that consuming adequate amounts of dairy products may reduce the risk of developing periodontal disease. Examining the dental health of 942 subjects ages 40 to 79, researchers at Kyushu University, in Japan, discovered that those whose diets regularly included two ounces (55 g) of foods containing lactic acid (milk, cheese, and yogurt) were significantly less likely to have deep “pockets” (loss of attachment of tooth to gum) than those who consumed fewer dairy products.
Adverse Effects Associated with This Food Increased risk of heart disease. Like other foods from animals, cheese is a source of choles- terol and saturated fats, which increase the amount of cholesterol circulating in your blood and raise your risk of heart disease. To reduce the risk of heart disease, the USDA /Health and Human Services Dietary Guidelines for Americans recommends limiting the amount of cholesterol in your diet to no more than 300 mg a day. The guidelines also recommend limit- ing the amount of fat you consume to no more than 30 percent of your total calories, while holding your consumption of saturated fats to more than 10 percent of your total calories (the calories from saturated fats are counted as part of the total calories from fat). Food poisoning. Cheese made from raw (unpasteurized) milk may contain hazardous microorganisms, including Salmonella and Listeria. Salmonella causes serious gastric upset; Lis- teria, a flulike infection, encephalitis, or blood infection. Both may be life-threatening to the very young, the very old, pregnant women, and those whose immune systems are weakened either by illness (such as AIDS) or drugs (such as cancer chemotherapy). In 1998, the Federal Centers for Disease Control (CDC) released data identif ying Listeria as the cause of nearly half the reported deaths from food poisoning. Allergy to milk proteins. Milk is one of the foods most frequently implicated as a cause of allergic reactions, particularly upset stomach. However, in many cases the reaction is not a true allergy but the result of lactose intolerance (see below). Lactose intolerance. Lactose intolerance—the inability to digest the sugar in milk—is an inherited metabolic deficiency that affects two thirds of all adults, including 90 to 95 percent of all Orientals, 70 to 75 percent of all blacks, and 6 to 8 percent of Caucasians. These people do not have sufficient amounts of lactase, the enzyme that breaks the disaccharide lactose into its easily digested components, galactose and glucose. When they drink milk, the undi- gested sugar is fermented by bacteria in the gut, causing bloating, diarrhea, flatulence, and intestinal discomfort. Some milk is now sold with added lactase to digest the lactose and make the milk usable for lactase-deficient people. In making cheese, most of the lactose in milk is broken down into glucose and galactose. There is very little lactose in cheeses other than the fresh ones—cottage cheese, cream cheese, and farmer cheese. Galactosemia. Galactosemia is an inherited metabolic disorder in which the body lacks the enzymes needed to metabolize galactose, a component of lactose. Galactosemia is a reces- sive trait; you must receive the gene from both parents to develop the condition. Babies born with galactosemia will fail to thrive and may develop brain damage or cataracts if they are given milk. To prevent this, children with galactosemia are usually kept on a protective milk- free diet for several years, until their bodies have developed alternative pathways by which to metabolize galactose. Pregnant women who are known carriers of galactosemia may be advised to give up milk and milk products while pregnant lest the unmetabolized galactose in their bodies cause brain damage to the fetus (damage not detectable by amniocentesis). Genetic counseling is available to identif y galactosemia carriers and assess their chances of producing a baby with the disorder. Penicillin sensitivity. People who experience a sensitivity reaction the first time they take penicillin may have been sensitized by exposure to the Penicillium molds in the environment, including the Penicillium molds used to make brie, blue, camembert, roquefort, Stilton, and other “blue” cheeses.
Food/Drug Interactions Tetracycline. The calcium ions in milk products, including cheese, bind tetracyclines into insoluble compounds. If you take tetracyclines with cheese, your body may not be able to absorb and use the drug efficiently. Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyra- mine, a substance found in many fermented or aged foods. Tyramine constricts blood ves- sels and increases blood pressure. If you eat a food such as aged or fermented cheese which is high in tyramine while you are taking an M AO inhibitor, your body may not be able to eliminate the tyramine. The result may be a hypertensive crisis.
Tyramine Content of Cheeses High Boursault, Camembert, Cheddar, Emmenthaler, Stilton Medium to high Blue, brick, Brie, Gruyère, mozzarella, Parmesan, Romano, Roquefort Low Processed American cheese Very little or none Cottage and cream cheese Sources: The Medical Letter Handbook of Adverse Drug Interactions (1985); Handbook of Clinical Dietetics ( The A merican Dietet ic Associat ion, 1981). False-positive test for pheochromocytoma. Pheochromocytomas (tumors of the adrenal glands) secrete adrenalin that is converted by the body to vanillyl-mandelic acid ( VM A) and excreted in the urine. Tests for this tumor measure the level of VM A in the urine. Since cheese contains VM A, taking the test after eating cheese may result in a false-positive result. Ordinarily, cheese is prohibited for at least 72 hours before this diagnostic test.... cheese
Nutritional Profile Energy value (calories per serving): Moderate Protein: High Fat: Low to moderate Saturated fat: Low to moderate Cholesterol: Moderate Carbohydrates: Low Fiber: None Sodium: Low (fresh fish) High (some canned or salted fish) Major vitamin contribution: Vitamin A, vitamin D Major mineral contribution: Iodine, selenium, phosphorus, potassium, iron, calcium
About the Nutrients in This Food Like meat, poultry, milk, and eggs, fish are an excellent source of high- quality proteins with sufficient amount of all the essential amino acids. While some fish have as much or more fat per serving than some meats, the fat content of fish is always lower in saturated fat and higher in unsaturated fats. For example, 100 g/3.5 ounce cooked pink salmon (a fatty fish) has 4.4 g total fat, but only 0.7 g saturated fat, 1.2 g monounsaturated fat, and 1.7 g polyunsaturated fat; 100 g/3.5 ounce lean top sirloin has four grams fat but twice as much saturated fat (1.5 g), plus 1.6 g monounsatu- rated fat and only 0.2 g polyunsaturated fat. Omega-3 Fatty Acid Content of Various Fish (Continued) Fish Grams/ounce Rainbow trout 0.30 Lake whitefish 0.25 Source: “Food for t he Heart,” American Health, April 1985. Fish oils are one of the few natural food sources of vitamin D. Salmon also has vita- min A derived from carotenoid pigments in the plants eaten by the fish. The soft bones in some canned salmon and sardines are an excellent source of calcium. CAUTION: do not eat the bones in r aw or cook ed fish. the only bones consider ed edible ar e those in the canned products.
The Most Nutritious Way to Serve This Food Cooked, to kill parasites and potentially pathological microorganisms living in raw fish. Broiled, to liquify fat and eliminate the fat-soluble environmental contaminants found in some freshwater fish. With the soft, mashed, calcium-rich bones (in canned salmon and canned sardines).
Diets That May Restrict or Exclude This Food Low-purine (antigout) diet Low-sodium diet (canned, salted, or smoked fish)
Buying This Food Look for: Fresh-smelling whole fish with shiny skin; reddish pink, moist gills; and clear, bulging eyes. The flesh should spring back when you press it lightly. Choose fish fillets that look moist, not dry. Choose tightly sealed, solidly frozen packages of frozen fish. In 1998, the FDA /National Center for Toxicological Research released for testing an inexpensive indicator called “Fresh Tag.” The indicator, to be packed with seafood, changes color if the product spoils. Avoid: Fresh whole fish whose eyes have sunk into the head (a clear sign of aging); fillets that look dry; and packages of frozen fish that are stained (whatever leaked on the package may have seeped through onto the fish) or are coated with ice crystals (the package may have defrosted and been refrozen).
Storing This Food Remove fish from plastic wrap as soon as you get it home. Plastic keeps out air, encouraging the growth of bacteria that make the fish smell bad. If the fish smells bad when you open the package, throw it out. Refrigerate all fresh and smoked fish immediately. Fish spoils quickly because it has a high proportion of polyunsaturated fatty acids (which pick up oxygen much more easily than saturated or monounsaturated fatty acids). Refrigeration also slows the action of microorgan- isms on the surface of the fish that convert proteins and other substances to mucopolysac- charides, leaving a slimy film on the fish. Keep fish frozen until you are ready to use it. Store canned fish in a cool cabinet or in a refrigerator (but not the freezer). The cooler the temperature, the longer the shelf life.
Preparing This Food Fresh fish. Rub the fish with lemon juice, then rinse it under cold running water. The lemon juice (an acid) will convert the nitrogen compounds that make fish smell “fishy” to compounds that break apart easily and can be rinsed off the fish with cool running water. R insing your hands in lemon juice and water will get rid of the fishy smell after you have been preparing fresh fish. Frozen fish. Defrost plain frozen fish in the refrigerator or under cold running water. Pre- pared frozen fish dishes should not be thawed before you cook them since defrosting will make the sauce or coating soggy. Salted dried fish. Salted dried fish should be soaked to remove the salt. How long you have to soak the fish depends on how much salt was added in processing. A reasonable average for salt cod, mackerel, haddock (finnan haddie), or herring is three to six hours, with two or three changes of water. When you are done, clean all utensils thoroughly with hot soap and hot water. Wash your cutting board, wood or plastic, with hot water, soap, and a bleach-and-water solution. For ultimate safety in preventing the transfer of microorganisms from the raw fish to other foods, keep one cutting board exclusively for raw fish, meats, and poultry, and a second one for everything else. Finally, don’t forget to wash your hands.
What Happens When You Cook This Food Heat changes the structure of proteins. It denatures the protein molecules so that they break apart into smaller fragments or change shape or clump together. These changes force moisture out of the tissues so that the fish turns opaque. The longer you cook fish, the more moisture it will lose. Cooked fish flakes because the connective tissue in fish “melts” at a relatively low temperature. Heating fish thoroughly destroys parasites and microorganisms that live in raw fish, making the fish safer to eat.
How Other Kinds of Processing Affect This Food Marinating. Like heat, acids coagulate the proteins in fish, squeezing out moisture. Fish marinated in citrus juices and other acids such as vinegar or wine has a firm texture and looks cooked, but the acid bath may not inactivate parasites in the fish. Canning. Fish is naturally low in sodium, but can ned fish often contains enough added salt to make it a high-sodium food. A 3.5-ounce ser ving of baked, fresh red salmon, for example, has 55 mg sodium, while an equal ser ving of regular can ned salmon has 443 mg. If the fish is can ned in oil it is also much higher in calories than fresh fish. Freezing. When fish is frozen, ice cr ystals form in the flesh and tear its cells so that mois- ture leaks out when the fish is defrosted. Commercial flash-freezing offers some protec- tion by freezing the fish so fast that the ice cr ystals stay small and do less damage, but all defrosted fish tastes drier and less palatable than fresh fish. Freezing slows but does not stop the oxidation of fats that causes fish to deteriorate. Curing. Fish can be cured (preser ved) by smoking, dr ying, salting, or pickling, all of which coagulate the muscle tissue and prevent microorganisms from growing. Each method has its own particular drawbacks. Smoking adds potentially carcinogenic chemicals. Dr ying reduces the water content, concentrates the solids and nutrients, increases the calories per ounce, and raises the amount of sodium.
Medical Uses and/or Benefits Protection against cardiovascular disease. The most important fats in fish are the poly- unsaturated acids k nown as omega-3s. These fatt y acids appear to work their way into heart cells where they seem to help stabilize the heart muscle and prevent potentially fatal arrhythmia (irregular heartbeat). A mong 85,000 women in the long-run n ing Nurses’ Health Study, those who ate fatt y fish at least five times a week were nearly 50 percent less likely to die from heart disease than those who ate fish less frequently. Similar results appeared in men in the equally long-run n ing Physicians’ Health Study. Some studies suggest that people may get similar benefits from omega-3 capsules. Researchers at the Consorzio Mario Negri Sud in Santa Maria Imbaro ( Italy) say that men given a one-gram fish oil capsule once a day have a risk of sudden death 42 percent lower than men given placebos ( “look-alike” pills with no fish oil). However, most nutrition scientists recom- mend food over supplements. Omega-3 Content of Various Food Fish Fish* (3 oz.) Omega-3 (grams) Salmon, Atlantic 1.8 Anchovy, canned* 1.7 Mackerel, Pacific 1.6 Salmon, pink, canned* 1.4 Sardine, Pacific, canned* 1.4 Trout, rainbow 1.0 Tuna, white, canned* 0.7 Mussels 0.7 * cooked, wit hout sauce * drained Source: Nat ional Fisheries Inst itute; USDA Nut rient Data Laborator y. Nat ional Nut ri- ent Database for Standard Reference. Available online. UR L : http://w w w.nal.usda. gov/fnic/foodcomp/search /.
Adverse Effects Associated with This Food Allergic reaction. According to the Merck Manual, fish is one of the 12 foods most likely to trigger classic food allergy symptoms: hives, swelling of the lips and eyes, and upset stom- ach. The others are berries (blackberries, blueberries, raspberries, strawberries), chocolate, corn, eggs, legumes (green peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see wheat cer ea ls). NOTE : Canned tuna products may contain sulfites in vegetable proteins used to enhance the tuna’s flavor. People sensitive to sulfites may suf- fer serious allergic reactions, including potentially fatal anaphylactic shock, if they eat tuna containing sulfites. In 1997, tuna manufacturers agreed to put warning labels on products with sulfites. Environmental contaminants. Some fish are contaminated with methylmercury, a compound produced by bacteria that chemically alters naturally occurring mercury (a metal found in rock and soil) or mercury released into water through industrial pollution. The methylmer- cury is absorbed by small fish, which are eaten by larger fish, which are then eaten by human beings. The larger the fish and the longer it lives the more methylmercury it absorbs. The measurement used to describe the amount of methylmercury in fish is ppm (parts per mil- lion). Newly-popular tilapia, a small fish, has an average 0.01 ppm, while shark, a big fish, may have up to 4.54 ppm, 450 times as much. That is a relatively small amount of methylmercur y; it will soon make its way harmlessly out of the body. But even small amounts may be hazardous during pregnancy because methylmercur y targets the developing fetal ner vous system. Repeated studies have shown that women who eat lots of high-mercur y fish while pregnant are more likely to deliver babies with developmental problems. As a result, the FDA and the Environ men- tal Protection Agency have now warned that women who may become pregnant, who are pregnant, or who are nursing should avoid shark, swordfish, king mackerel, and tilefish, the fish most likely to contain large amounts of methylmercur y. The same prohibition applies to ver y young children; although there are no studies of newborns and babies, the young brain continues to develop after birth and the logic is that the prohibition during pregnancy should extend into early life. That does not mean no fish at all should be eaten during pregnancy. In fact, a 2003 report in the Journal of Epidemiology and Community Health of data from an 11,585-woman study at the University of Bristol (England) shows that women who don’t eat any fish while pregnant are nearly 40 percent more likely to deliver low birth-weight infants than are women who eat about an ounce of fish a day, the equivalent of 1/3 of a small can of tuna. One theory is that omega-3 fatty acids in the fish may increase the flow of nutrient-rich blood through the placenta to the fetus. University of Southern California researchers say that omega-3s may also protect some children from asthma. Their study found that children born to asthmatic mothers who ate oily fish such as salmon at least once a month while pregnant were less likely to develop asthma before age five than children whose asthmatic pregnant mothers never ate oily fish. The following table lists the estimated levels of mercury in common food fish. For the complete list of mercury levels in fish, click onto www.cfsan.fda.gov/~frf/sea-mehg.html. Mercury Levels in Common Food Fish Low levels (0.01– 0.12 ppm* average) Anchovies, butterfish, catfish, clams, cod, crab (blue, king, snow), crawfish, croaker (Atlantic), flounder, haddock, hake, herring, lobster (spiny/Atlantic) mackerel, mul- let, ocean perch, oysters, pollock, salmon (canned/fresh frozen), sardines, scallops, shad (American), shrimp, sole, squid, tilapia, trout (freshwater), tuna (canned, light), whitefish, whiting Mid levels (0.14 – 0.54 ppm* average) Bass (salt water), bluefish, carp, croaker ( Pacific), freshwater perch, grouper, halibut, lobster (Northern A merican), mackerel (Spanish), marlin, monkfish, orange roughy, skate, snapper, tilefish (Atlantic), tuna (can ned albacore, fresh/frozen), weakfish/ sea trout High levels (0.73 –1.45 ppm* average) King mackerel, shark, swordfish, tilefish * ppm = parts per million, i.e. parts of mercur y to 1,000,000 parts fish Source: U.S. Food and Drug Administ rat ion, Center for Food Safet y and Applied Nut rit ion, “Mercur y Levels in Commercial Fish and Shellfish.” Available online. UR L : w w w.cfsan.fda. gov/~frf/sea-mehg.ht ml. Parasitical, viral, and bacterial infections. Like raw meat, raw fish may carry various pathogens, including fish tapeworm and flukes in freshwater fish and Salmonella or other microorganisms left on the fish by infected foodhandlers. Cooking the fish destroys these organisms. Scombroid poisoning. Bacterial decomposition that occurs after fish is caught produces a his- taminelike toxin in the flesh of mackerel, tuna, bonito, and albacore. This toxin may trigger a number of symptoms, including a flushed face immediately after you eat it. The other signs of scombroid poisoning—nausea, vomiting, stomach pain, and hives—show up a few minutes later. The symptoms usually last 24 hours or less.
Food/Drug Interactions Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyramine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. If you eat a food such as pickled herring, which is high in tyramine, while you are taking an M AO inhibitor, your body may not be able to eliminate the tyramine and the result may be a hypertensive crisis.... fish
Nutritional Profile Energy value (calories per serving): Moderate Protein: High Fat: Low Saturated fat: High Cholesterol: Moderate Carbohydrates: None Fiber: None Sodium: Low Major vitamin contribution: B vitamins Major mineral contribution: Iron, zinc
About the Nutrients in This Food Like other animal foods, game meat has high-quality proteins with suf- ficient amounts of all the essential amino acids. Some game meat has less fat, saturated fat, and cholesterol than beef. All game meat is an excellent source of B vitamins, plus heme iron, the form of iron most easily absorbed by your body, and zinc. For example, one four-ounce serving of roast bison has 28 g protein, 2.7 g fat (1.04 g saturated fat), 93.7 mg cholesterol, 3.88 mg iron (25.8 percent of the R DA for a woman of childbearing age), and 4.1 mg zinc (27 percent of the R DA for a man). The Nutrients in Roasted Game Meat (4-ounce serving)
The Most Nutritious Way to Serve This Food With a food rich in vitamin C. Vitamin C increases the absorption of iron.
Diets That May Restrict or Exclude This Food Low-protein diet (for kidney disease)
Buying This Food In American markets, game meats are usually sold frozen. Choose a package with no leaks or stains to suggest previous defrosting.
Storing This Food Keep frozen game meat well wrapped in the freezer until you are ready to use it. The packaging protects the meat from oxygen that can change its pigments from reddish to brown. Freezing prolongs the freshness of the meat by slowing the natural multiplication of bacteria that digest proteins and other substances on the surface, converting them to a slimy film. The bacteria also change the meat’s sulfur-containing amino acids methionine and cystine into smelly chemicals called mercaptans. When the mercaptans combine with myoglobin, they produce the greenish pigment that gives spoiled meat its characteristic unpleasant appearance. Large cuts of game meat can be safely frozen, at 0°F, for six months to a year.
Preparing This Food Defrost the meat in the refrigerator to protect it from spoilage. Trim the meat to dispose of all visible fat, thus reducing the amount of fat and cholesterol in each serving. When you are done, clean all utensils thoroughly with hot soap and hot water. Wash your cutting board, wood or plastic, with hot water, soap, and a bleach-and-water solution. For ultimate safety in preventing the transfer of microorganisms from the raw meat to other foods, keep one cutting board exclusively for raw meats, fish, and poultry, and a second one for everything else. Finally, don’t forget to wash your hands.
What Happens When You Cook This Food Cooking changes the way meat looks and tastes, alters its nutritional value, makes it safer, and extends its shelf life. Browning meat before you cook it does not “seal in the juices,” but it does change the flavor by caramelizing proteins and sugars on the surface. Because meat’s only sugars are the Game Meat
63 small amounts of glycogen in muscle tissue, we add sugars in marinades or basting liquids that may also contain acids (vinegar, lemon juice, wine) to break down muscle fibers and tenderize the meat. (NOTE : Browning has one minor nutritional drawback. It breaks amino acids on the surface of the meat into smaller compounds that are no longer useful proteins.) When meat is heated, it loses water and shrinks. Its pigments, which combine with oxygen, are denatured (broken into fragments) by the heat. They turn brown, the natural color of well-done meat. At the same time, the fats in the meat are oxidized, a reaction that produces a characteristic warmed-over flavor when the cooked meat is refrigerated and then reheated. Cooking and storing the meat under a blanket of antioxidants—catsup or a gravy made of tomatoes, peppers and other vitamin-C rich vegetables—reduces fat oxidation and lessens the warmed-over flavor. Meat reheated in a microwave oven is also less likely to taste warmed-over.
How Other Kinds of Processing Affect This Food Aging. Hanging fresh meat exposed to air in a cold room evaporates moisture and shrinks the meat slightly. At the same time, bacterial action on the surface of the meat breaks down proteins, producing an “aged” flavor. (See below, Food/drug interactions.) Curing. Salt-curing preserves meat through osmosis, the physical reaction in which liquids flow across a membrane, such as the wall of a cell, from a less dense to a more dense solu- tion. The salt or sugar used in curing dissolve in the liquid on the surface of the meat to make a solution that is more dense than the liquid inside the cells of the meat. Water flows out of the meat and out of the cells of any microorganisms living on the meat, killing the micro-organisms and protecting the meat from bacterial damage. Salt-cured meat is higher in sodium than fresh meat. Smoking. Hanging fresh meat over an open fire slowly dries the meat, kills microorgan- isms on its surface, and gives the meat a rich, smoky flavor. The flavor varies with the wood used in the fire. Meats smoked over an open fire are exposed to carcinogenic chemicals in the smoke, including a-benzopyrene. Artificial smoke flavoring is commercially treated to remove tar and a-benzopyrene.
Medical Uses and/or Benefits Treating and/or preventing iron deficiency. Without meat in the diet, it is virtually impossible for an adult woman to meet her iron requirement without supplements.
Adverse Effects Associated with This Food Increased risk of cardiovascular disease. Like all foods from animals, game meats are a source of cholesterol. To reduce the risk of heart disease, the National Cholesterol Education Project recommends following the Step I and Step II diets. The Step I diet provides no more than 30 percent of total daily calories from fat, no more than 10 percent of total daily calories from saturated fat, and no more than 300 mg of cholesterol per day. It is designed for healthy people whose cholesterol is in the range of 200 –239 mg/dL. The Step II diet provides 25– 35 percent of total calories from fat, less than 7 percent of total calories from saturated fat, up to 10 percent of total calories from polyunsaturated fat, up to 20 percent of total calories from monounsaturated fat, and less than 300 mg cho- lesterol per day. This stricter regimen is designed for people who have one or more of the following conditions: • Existing cardiovascular disease • High levels of low-density lipoproteins (LDLs, or “bad” cholesterol) or low levels of high-density lipoproteins (HDLs, or “good” cholesterol) • Obesity • Type 1 diabetes (insulin-dependent diabetes, or diabetes mellitus) • Metabolic syndrome, a.k.a. insulin resistance syndrome, a cluster of risk fac- tors that includes type 2 diabetes (non-insulin-dependent diabetes) Food-borne illness. Improperly cooked meat contaminated with E. coli O157:H7 has been linked to a number of fatalities in several parts of the United States. In addition, meat con- taminated with other bacteria, viruses, or parasites poses special problems for people with a weakened immune system: the very young, the very old, cancer chemotherapy patients, and people with HIV. Cooking meat to an internal temperature of 140°F should destroy Salmo- nella and Campylobacter jejuni; to 165°F, E. coli, and to 212°F, Listeria monocytogenes. Decline in kidney function. Proteins are nitrogen compounds. When metabolized, they yield ammonia that is excreted through the kidneys. In laboratory animals, a sustained high-pro- tein diet increases the flow of blood through the kidneys, accelerating the natural age-related decline in kidney function. Some experts suggest that this may also occur in human beings.
Food/Drug Interactions Monoamine oxidase (MAO) inhibitors. Meat “tenderized” with papaya or a papain powder can interact with the class of antidepressant drugs known as monoamine oxidase inhibi- tors. Papain meat tenderizers work by breaking up the long chains of protein molecules. One by-product of this process is tyramine, a substance that constructs blood vessels and raises blood pressure. M AO inhibitors inactivate naturally occurring enzymes in your body that metabolize tyramine. If you eat a food such as papain-tenderized meat, which is high in tyramine, while you are taking an M AO inhibitor, you cannot effectively eliminate the tyramine from your body. The result may be a hypertensive crisis.... game meat
Symptoms: difficult breathing. Breathing-in is noisy, spasmodic and prolonged. Effusion of a plastic-like material which coagulates to form a false membrane. Fretfulness. Symptoms of a ‘cold’ disappear but towards evening skin becomes hot, pulse rises, and a sense of anxiety takes over.
Laryngeal muscles are held in spasm, calling for antispasmodics. If the course of the disease has not been arrested on the third or fourth day a crisis is at hand and modern hospital treatment necessary. The condition is always worse at night. Treatment varies with each individual case. Stimulating diaphoretics induce gentle sweating, de-toxicate, and relieve tension on respiration.
Lobelia is unsurpassed as a croupal remedy and may be given alone either by infusion (tea) liquid extract or acid tincture. Given as a powder it works too slowly in a condition where speed saves lives.
While copious drinks of Catnep (Catmint) tea help, stronger medicines are indicated. Where resistance runs low, add Echinacea. Should any of these induce vomiting, it would be regarded as a favourable sign after which a measure of relief is felt.
Alternatives. Liquid extracts. Formula. Pleurisy root 2; Lobelia 1; Ginger half. Dose: one 5ml teaspoon in hot water every 2 hours. Infants: 10-30 drops.
Tinctures. Formula: Pleurisy root 2; Blue Cohosh 1; Lobelia 1. One to two 5ml teaspoons in hot water every 2 hours. Infants 10-20 drops.
Practitioner. Formula: 2 drops Tincture Belladonna BP 1980, 4 drops Tincture Ipecuanha BP 1973. Water to 2oz. One 5ml teaspoon in water every 15 minutes for 2 or 3 doses to enable child to sleep until morning; then once every hour or two for 3 days. Not to press medicines on children feeling comfortable. Inhalant. Friar’s Balsam. Steam kettle on hand. Or:–
Aromatherapy. Inhale. Drops. Thyme 1; Eucalyptus 2; Hyssop 1. In bowl of boiling water at the bedside at night or when necessary.
Drowsiness requires diffusive stimulants: Tinctures: Echinacea 2; Ginger quarter; Pleurisy root 1. One to two 5ml teaspoons in hot water every 2 hours; infants 5-20 drops according to age.
Collapse. When confronted with an ashen face, depression and collapse, powerful stimulants are necessary: tinctures – Formula. Prickly Ash bark 3; Blue Cohosh 2; Ginger 1. One 5ml teaspoon in hot water every 10 minutes; (infants 5-20 drops).
Topical. Relaxing oil. Ingredients: 3oz olive oil; half an ounce Liquid Extract or tincture Lobelia; Tincture Capsicum (Cayenne) 20 drops. Shake vigorously. Rub freely on throat, winding round a strip of suitable material wrung out in hot water. Cover with protective bandage or plastic film. Renew hot flannel every 10-15 minutes until paroxysms subside.
Poultice. Dissolve coffeespoon Cayenne powder or chillies in cup cider vinegar. Simmer gently 10 minutes. Strain. Saturate a piece of suitable material and wind round throat to relieve congested blood vessels.
Diet: No dairy foods which increase phlegm. No solid meals. Herb teas, vegetable and fruit juices only.
Steam kettle on hand, or Friar’s Balsam inhalation. See: FRIAR’S BALSAM. Regulate bowels. The condition is worsened in a dry hot atmosphere; reduce central heating to ensure adequate ventilation. Many a serious stridor and cough have been relieved by running some hot water into a bath or basin and sitting the child in a homemade Turkish bath.
Treatment by or in liaison with a general medical practitioner. ... croup
Filipendula ulmaria L. German: Ma?desu?ss. French: Ulmaire. Spanish: Ulmaria. Italian: Ulmaria. Leaves and stems. Contains salicin. The herbalist’s bicarbonate of soda. Contains salicylic acid which has an aspirin (anti-thrombotic) effect on blood vessels.
Constituents: flavonoids, oil, phenolic glycosides.
Action: antacid, anti-rheumatic, stomachic, astringent, antiseptic (internal), diaphoretic, diuretic, hepatic, anti-ulcer, anti-inflammatory, mild urinary analgesic, anti-coagulant.
“A calming influence in an overactive digestive system.” (Simon Mills)
Uses: effective symptomatic relief of indigestion and other upper gastro-intestinal conditions associated with flatulence and hyperacidity. Gastric ulcer, gastric reflux, liver disorder, summer diarrhoea in children, cystitis, rheumatism, foul breath. Red sandy deposits in the urine with an oily film on the surface. Arthrosis, chronic rheumatism, oedema, urinary stone, cellulitis.
Combines well with Goldenseal and Marshmallow for gastric ulcer. Balanced combination of antacids with anti-flatulent: Meadowsweet, Parsley and Black Horehound (equal parts as a tea).
Preparations: Average dose 2-6 grams dried herb or in infusion. Reduced dose for children and the elderly.
Tea: 1-2 teaspoons to each cup boiling water; infuse 15 minutes. Half-1 cup. Liquid Extract BHC Vol 1. 1:1 in 25 per cent ethanol. Dose: 2-6ml. Tincture BHC Vol 1: 1:5 in 25 per cent ethanol. Dose: 2 to 4ml.
Powder, capsules: 250mg. 2 capsules thrice daily before meals. (Arkocaps) ... meadowsweet
Aortography is used if surgery is needed to treat an aneurysm (ballooning of the aorta).... aortography
Anaemia is not a disease but a feature of many different disorders. There are various types, which can be classified into those due to decreased or defective red-cell production by bone marrow (see anaemia, aplastic; anaemia, megaloblastic; anaemia, iron-deficiency) and those due to decreased survival of the red cells in the blood (see anaemia, haemolytic).
The severity of symptoms depends on how low the haemoglobin concentration has become. Slightly reduced levels can cause headaches, tiredness, and lethargy. Severely reduced levels can cause breathing difficulty on exercise, dizziness, angina, and palpitations. General signs include pallor, particularly of the skin creases, the lining of the mouth, and the inside of the eyelids.
Anaemia is diagnosed from the symptoms and by blood tests (see blood count; blood film). A bone marrow biopsy may be needed if the problem is with red blood cell production.... anaemia
When haemolysis is due to a defect inside the red cells, the underlying problem is abnormal rigidity of the cell membrane. This causes the cells to become trapped, at an early stage of their life-span, in the small blood vessels of the spleen, where they are destroyed by macrophages (cells that ingest foreign particles). Abnormal rigidity may result from an inherited defect of the cell membrane (as in hereditary spherocytosis), a defect of the haemoglobin in the cell (as in sickle-cell anaemia), or a defect of one of the cell’s enzymes. An inherited deficiency of the glucose-6phosphate dehydrogenase enzyme (see G6PD deficiency) may result in episodes of haemolytic anaemia since the red cells are prone to damage by infectious illness or certain drugs or foods.
Haemolytic anaemias due to defects outside the red cells fall into 3 main groups. First are disorders in which red cells are destroyed by buffeting (by artificial surfaces such as replacement heart valves, abnormal blood-vessel linings, or a blood clot in a vessel, for example). In the 2nd group, the red cells are destroyed by the immune system. Immune haemolytic anaemias may occur if foreign blood cells enter the bloodstream, as occurs in an incompatible blood transfusion, or they may be due to an autoimmune disorder. In haemolytic disease of the newborn, the baby’s red cells are destroyed by the mother’s antibodies crossing the placenta. Thirdly, the red cells may be destroyed by microorganisms; the most common cause is malaria. People with haemolytic anaemia may have symptoms common to all types of anaemia, such as fatigue and breathlessness, or symptoms specifically due to haemolysis, such as jaundice.
Diagnosis is made by examination of the blood (see blood film). Some inherited anaemias can be controlled by removing the spleen (see splenectomy). Others, such as G6PD deficiency, can be prevented by avoiding the drugs or foods that precipitate haemolysis. Anaemias due to immune processes can often be controlled by immunosuppressant drugs. Transfusions of red cells are sometimes needed for emergency treatment of life-threatening anaemia.... anaemia, haemolytic
that is opaque to X-rays). Angiography is used to detect conditions that alter the appearance of blood vessels, such as aneurysm, and narrowing or blockage of blood vessels by atherosclerosis, or by a thrombus or embolus. It is also used to detect changes in the pattern of blood vessels that supply organs injured or affected by a tumour.
Carotid angiography (of the arteries in the neck) may be used to investigate transient ischaemic attacks. Cerebral angiography can be used to detect an aneurysm in the brain or pinpoint the position of a brain tumour. Coronary angiography, often combined with cardiac catheterization, can identify the sites of narrowing or blockage in coronary artery disease. Digital subtraction angiography uses computer techniques to process images and remove unwanted background information.
Angiographic techniques have been adapted to allow certain treatments that, in some cases, eliminate the need for surgery (see angioplasty, balloon; embolization). (See also aortography.)... angiography
The eyelids are held in place by ligaments attached to the socket’s bony edges.
They consist of thin plates of fibrous tissue (called tarsal plates) covered by muscle and a thin layer of skin.
The inner layer is covered by an extension of the conjunctiva.
Along the edge of each lid are two rows of eyelashes.
Immediately behind the eyelashes are the openings of the ducts leading from the meibomian glands, which secrete the oily part of the tear film.
The lids act as protective shutters, closing as a reflex action if anything approaches the eye.
They also smear the tear film across the cornea.... eyelid
Actinic keratopathy is a painful condition in which the outer layer of the cornea is damaged by ultraviolet light.
Exposure keratopathy is corneal damage due to loss of the protection afforded by the tear film and blink reflex.
It may occur in conditions in which the eyelids inadequately cover the cornea, including severe exophthalmos, facial palsy, and ectropion.... keratopathy
Different types of barium X-ray examination are used to investigate different parts of the gastrointestinal tract. Barium swallow involves drinking a barium solution and is used to investigate the oesophagus. A barium meal is carried out to look at the lower oesophagus, stomach, and duodenum. Barium followthrough is used to investigate disorders of the small intestine; X-rays are taken at intervals as the barium reaches the intestine. A barium enema is used to investigate disorders of the large intestine and rectum; barium is introduced though a tube inserted in the rectum. Barium remaining in the intestine may cause constipation. Therefore, it is important to have a high-fibre diet and drink plenty of water after a barium examination, until all the barium has passed through.... barium x-ray examinations
Red blood cells (also known as RBCs, red blood corpuscles, or erythrocytes) transport oxygen from the lungs to the tissues (see respiration). Each is packed with haemoglobin, enzymes, minerals, and sugars. Abnormalities can occur in the rate at which RBCs are either produced or destroyed, in their numbers, and in their shape, size, and haemoglobin content, causing forms of
anaemia and polycythaemia (see blood, disorders of).
White blood cells (also called WBCs, white blood corpuscles, or leukocytes) protect the body against infection and fight infection when it occurs. The 3 main types of are granulocytes (also called polymorphonuclear leukocytes), monocytes, and lymphocytes. Granulocytes are further classified as neutrophils, eosinophils, or basophils, and each type of granulocyte has a role in either fighting infection or in inflammatory or allergic reactions. Monocytes and lymphocytes also play an important part in the immune system. Lymphocytes are usually formed in the lymph nodes. One type, a T-lymphocyte, is responsible for the delayed hypersensitivity reactions
White (see allergy) and Red blood blood cell is also involved in cell (neutrophil) protection against cancer. T-lymphocytes manufacture chemicals, known as lymphokines, which affect the function of other cells. In addition, the T-cells moderate the activity of B-lymphocytes, which form the antibodies that can prevent a second attack of certain infectious diseases. Platelets (also known as thrombocytes), are the smallest blood cells and are important in blood clotting.
The numbers, shapes, and appearance of the various types of blood cell are of great value in the diagnosis of disease (see blood count; blood film).... blood cells
Donated blood is tested for a range of infectious agents such as hepatitis B and hepatitis C and antibodies to HIV. After being classified into blood groups, the blood is stored in a blood bank, either whole or separated into its different components (see blood products). Apheresis is a type of blood donation in which only a specific blood component, such as plasma, platelets, or white cells, is withdrawn from the donor. blood film A test that involves smearing a drop of blood on to a glass slide for examination under a microscope. The blood film is stained with dyes to make the blood cells show up clearly.
The test allows the shape and appearance of blood cells to be checked for any abnormality, such as the sickleshaped red blood cells characteristic of sickle cell anaemia.
The relative proportions of the different types of white blood cells can also be counted.
This examination, called a differential white cell count, may be helpful in diagnosing infection or leukaemia.
Blood films are also used in diagnosing infections, such as malaria, in which the parasites can be seen inside the red blood cells.
Blood films are usually carried out together with a full blood count.... blood donation
In actinic keratopathy, the outer layer of the cornea is damaged by ultraviolet light. In exposure keratopathy, damage is due to reduced protection by the tear film and blink reflex. The cornea can also be infected by viruses, bacteria, and fungi, the herpes simplex virus being especially dangerous. True inflammation of the cornea (called keratitis) is uncommon as the cornea contains no blood vessels.
Other disorders include: keratomalacia as a result of vitamin A deficiency; keratoconjunctivitis sicca (dry eye); corneal dystrophies such as keratoconus; and oedema, in which fluid builds up in the cornea and impairs vision.
Rare congenital defects include microcornea (smaller cornea than normal) or megalocornea (bigger than normal) and buphthalmos, or “ox-eye’’, in which the entire eyeball is distended as a result of glaucoma.
Degenerative conditions of the cornea such as calcium deposition, thinning, and spontaneous ulceration occur mainly in the elderly, and are more common in previously damaged eyes.... cornea
During a routine dental examination, the dentist uses a metal instrument to
probe for dental cavities, chipped teeth, or fillings. Dental X-rays are sometimes carried out to check for problems that may not be visible. Dentists also check how well the upper and lower teeth come together. Regular examinations in children enable the monitoring of the replacement of primary teeth by permanent, or secondary, teeth. Referral for orthodontic treatment may be made. dental extraction See tooth extraction. dental X-ray An image of the teeth and jaws that provides information for detecting, diagnosing, and treating conditions that can threaten oral and general health. There are 3 types of dental X-ray: periapical X-ray, bite-wing X-ray, and panoramic X-ray.
Periapical X-rays are taken using X-ray film held behind the teeth. They give detailed images of whole teeth and the surrounding tissues. They show unerupted or impacted teeth, root fractures, abscesses, cysts, and tumours, and can help diagnose some skeletal diseases. Bite-wing X-rays show the crowns of the teeth and can detect areas of decay and changes in bone due to periodontal disease. Panoramic X-rays show all the teeth and surrounding structures on one large film. They can show unerupted or impacted teeth, cysts, jaw fractures, or tumours. The amount of radiation received from dental X-rays is extremely small. However, dental X-rays should be avoided during pregnancy.... dental examination
The eyes work in conjunction with each other, under the control of the brain, aligning themselves on an object so that a clear image is formed on each retina. If necessary, the eyes sharpen images by altering focus in an automatic process called accommodation.
The eyeballs lie within the bony orbits. Each eyeball is moved by six delicate muscles. The eye has a tough outer coat, the sclera. At the front of the sclera, the transparent cornea serves as themain “lens” of the eye and does most of the focusing. Behind the cornea is a chamber of watery fluid, at the back of which is the iris with its pupil, which appears black. Tiny muscles alter the size of the pupil in response to changes in light intensity to control the amount of light entering the eye. Immediately behind the iris is the lens, suspended by fibres from a circular muscle ring called the ciliary body. Contraction of the ciliary body changes the shape of the lens, enabling fine focusing. Behind the lens is the main cavity of the eye, containing a clear gel, the vitreous humour. On the inside of the back of the eye is the retina, a complex structure of nerve tissue. The retina requires a constant supply of oxygen and glucose, and a network of blood vessels, the choroid, surrounds it. The eyeball is sealed off from the outside by a flexible membrane called the conjunctiva, which is attached to the skin at the corners of the eye and forms the inner lining of the lids. The conjunctiva contains tear- and mucus-secreting glands. They, along with an oily secretion from the meibomian glands in the lids, provide the tear film that protects the cornea and conjunctiva. The blink reflex is protective and helps to spread the tear film evenly over the cornea to enable clear vision.... eye
margin of the eye orbit and drains on to the conjunctiva. It secretes tears during crying and when the eye is irritated. The accessory gland lies within the conjunctiva, and maintains the normal tear film, secreting it directly onto the conjunctiva. Tears drain through the lacrimal puncta, tiny openings towards the inner ends of the upper and lower eyelids. The puncta are connected by narrow tubes to the lacrimal sac, which lies within the lacrimal bone on the side of the nose. Leading from the sac is the nasolacrimal duct, which opens inside the nose.... lacrimal apparatus
X-rays are produced artificially by bombarding a heavy metal tungsten target with electrons, in a device known as an X-ray tube. Low doses of the X-rays that are emitted are passed through body tissue and form images on film or a fluorescent screen. The X-ray image, also known as a radiograph or roentgenogram, shows the internal structure of the area that is being examined. Dense structures, such as bone, absorb X-rays well and appear white on an Xray image. Soft tissues, such as muscle, absorb less and appear grey.
Because X-rays can damage living cells, especially those that are dividing rapidly, high doses of radiation are used for treating cancer (see radiotherapy).
Hollow or fluid-filled parts of the body often do not show up well on X-ray film unless they first have a contrast medium (a substance that is opaque to X-rays) introduced into them. Contrastmedium X-ray techniques are used to image the gallbladder (see cholecystography), bile ducts (see cholangiography), the urinary tract (see urography), the gastrointestinal tract (see barium X-ray examinations), blood vessels (see angiography; venography), and the spinal cord (see myelography).
X-rays can be used to obtain an image of a “slice” through an organ or part of the body by using a technique known as tomography. More detailed images of a body slice are produced by combining tomography with the capabilities of a computer (see CT scanning).
Large doses of X-rays can be extremely hazardous, and even small doses carry some risk (see radiation hazards).
Modern X-ray film, equipment, and techniques produce high-quality images with the lowest possible radiation exposure to the patient.
The possibility of genetic damage can be minimized by using a lead shield to protect the patient’s reproductive organs from X-rays.
Radiographers and radiologists wear a film badge to monitor their exposure to radiation.
(See also imaging techniques; radiography; radiology.)... x-rays