Interneuron Health Dictionary

Interneuron: From 1 Different Sources


n. a neuron in the central nervous system that acts as a link between the different neurons in a *reflex arc. It usually possesses numerous branching processes (dendrites) that make possible extensive and complex circuits and pathways within the brain and spinal cord.
Health Source: Oxford | Concise Colour Medical Dictionary
Author: Jonathan Law, Elizabeth Martin

Neuron(e)

Also known as a nerve cell, this is the basic cellular building-block of the NERVOUS SYSTEM, which contains billions of neurones linked in a complex network and acting in di?erent combinations to keep the body informed about the outside world, and then to organise and activate appropriate responses. There are three main types of neurone:

Sensory These carry signals to the central nervous system (CNS) – the BRAIN and SPINAL CORD – from sensory receptors. These receptors respond to di?erent stimuli such as touch, pain, temperature, smells, sounds and light.

Motor These carry signals from the CNS to activate muscles or glands.

Interneurons These provide the interconnecting ‘electrical network’ within the CNS.

Structure Each neurone comprises a cell body, several branches called dendrites, and a single ?lamentous ?bre called an AXON. Axons may be anything from a few millimetres to a metre long; at their end are several branches acting as terminals through which electrochemical signals are sent to target cells, such as those of muscles, glands or the dendrites of another axon.

Axons of several neurones are grouped

together to form nerve tracts within the brain or spinal cord or nerve-?bres outside the CNS. Each nerve is surrounded by a sheath and contains bundles of ?bres. Some ?bres are medullated, having a sheath of MYELIN which acts as insulation, preventing nerve impulses from spreading beyond the ?bre conveying them.

The cellular part of the neurones makes up the grey matter of the brain and spinal cord – the former containing 600 million neurones. The dendrites meet with similar outgrowths from other neurones to form synapses. White matter is the term used for that part of the system composed of nerve ?bres.

Functions of nerves The greater part of the bodily activity originates in the nerve cells (see NERVE). Impulses are sent down the nerves which act simply as transmitters. The impulse causes sudden chemical changes in the muscles as the latter contract (see MUSCLE). The impulses from a sensory ending in the skin pass along a nerve-?bre to affect nerve cells in the spinal cord and brain, where they are perceived as a sensation. An impulse travels at a rate of about 30 metres (100 feet) per second. (See NERVOUS IMPULSE.)

The anterior roots of spinal nerves consist of motor ?bres leading to muscles, the posterior roots of sensory ?bres coming from the skin. The terms, EFFERENT and AFFERENT, are applied to these roots, because, in addition to motor ?bres, ?bres controlling blood vessels and secretory glands leave the cord in the anterior roots. The posterior roots contain, in addition to sensory ?bres, the nerve-?bres that transmit impulses from muscles, joints and other organs, which among other neurological functions provide the individual with his or her

proprioceptive faculties – the ability to know how various parts of the body are positioned.

The connection between the sensory and motor systems of nerves is important. The simplest form of nerve action is that known as automatic action. In this, a part of the nervous system, controlling, for example, the lungs, makes rhythmic discharges to maintain the regular action of the respiratory muscles. This controlling mechanism may be modi?ed by occasional sensory impressions and chemical changes from various sources.

Re?ex action This is an automatic or involuntary activity, prompted by fairly simple neurological circuits, without the subject’s consciousness necessarily being involved. Thus a painful pinprick will result in a re?ex withdrawal of the affected ?nger before the brain has time to send a ‘voluntary’ instruction to the muscles involved.

Voluntary Actions are more complicated than re?ex ones. The same mechanism is involved, but the brain initially exerts an inhibitory or blocking e?ect which prevents immediate re?ex action. Then the impulse, passing up to the cerebral hemispheres, stimulates cellular activity, the complexity of these processes depending upon the intellectual processes involved. Finally, the inhibition is removed and an impulse passes down to motor cells in the spinal cord, and a muscle or set of muscles is activated by the motor nerves. (Recent advances in magnetic resonance imaging (MRI) techniques have provided very clear images of nerve tracts in the brain which should lead to greater understanding of how the brain functions.) (See BRAIN; NERVOUS SYSTEM; SPINAL CORD.)... neuron(e)

Neuron

The term used to describe a nerve cell. A typical neuron consists of a cell body, several branching projections called dendrites, and a filamentous projection called an axon (also known as a nerve fibre). An axon branches at its end to form terminals through which electrical signals are transmitted to target cells. Most axons are coated with a layered insulating myelin sheath, which speeds the transmission of the signals. The myelin sheath is punctuated along its length by gaps called nodes of Ranvier, which help this process. Because the myelin sheath is nonconductive, ion exchange (depolarization) only occurs at a node, and signals leap from node to node along the length of the axon.

The nervous system contains billions of neurons, of which there are 3 main types: sensory neurons, which carry signals from sense receptors into the central nervous system (CNS); motor neurons, which carry signals from the CNS to muscles or glands; and interneurons, which form all the complex electrical circuitry within the CNS itself.

When a neuron transmits (“fires”) an electrical impulse, a chemical called a neurotransmitter is released from the axon terminals at synapses (junctions with other neurons). This neurotransmitter may make a muscle cell contract, cause an endocrine gland to release a hormone, or affect an adjacent neuron.

Different stimuli excite different types of neurons to fire. Sensory neurons, for example, may be excited by physical stimuli, such as cold or pressure. The activity of most neurons is controlled by the effects of neurotransmitters released from adjacent neurons. Certain neurotransmitters generate a sudden change in the balance of electrical potential inside and outside the cell (an “action potential”), which occurs at one point on the cell’s membrane and flows at high speed along it. Others stabilize neuronal membranes, preventing an action potential. Thus, the firing pattern of a neuron depends on the balance of excitatory and inhibitory influences acting on it.

If the cell body of a neuron is damaged or degenerates, the cell dies and is never replaced. A baby starts life with the maximum number of neurons, which decreases continuously thereafter.... neuron

Reflex Arc

the nervous circuit involved in a *reflex, being at its simplest a sensory nerve with a receptor, linked at a synapse in the brain or spinal cord with a motor nerve, which supplies a muscle or gland (see illustration). In a simple reflex (such as the *patellar reflex) only two neurons may be involved, but in other reflexes there may be several *interneurons in the arc.... reflex arc



Recent Searches