Legume Health Dictionary

Legume: From 1 Different Sources


Indian Senna

Cassia senna

Caesalpiniaceae

San: Svarnapatri;

Hin: Sanay, Sana Ka Patt;

Ben: Sonamukhi;

Mal: Sunnamukki, Chonnamukki, Nilavaka;

Tam: Nilavirai, Nilavakai;

Tel: Netatangedu

Importance: Indian Senna or Tinnevelly senna is a shrub very highly esteemed in India for its medicinal value. The leaves are useful in constipation, abdominal disorders, leprosy, skin diseases, leucoderma, splenomegaly, hepatopathy, jaundice, helminthiasis, dyspepsia, cough, bronchitis, typhoid fever, anaemia, tumours and vitiated conditions of pitta and vata (Warrier et al,1994). It is used in Ayurvedic preparations; “Pancha Sakara Churna”, “Shat Sakara Churna” and “Madhu Yastyadi Churna” used for constipation. Its use is widespread in Unani system and some of the important products of this system containing senna are “Itrifal Mulayyin”, “Jawarish Ood Mulayyin”, “Hab Shabyar”, “Sufuf Mulliyin”, “Sharbat Ahmad Shahi”, etc. used as a mild laxative (Thakur et al, 1989).

Distribution: The plant is of Mediterranean origin. It is found in Somalia, Saudi Arabia, parts of Pakistan and Kutch area of Gujarat. It is largely cultivated in Tirunelveli, Ramanathapuram, Madurai and Salem districts of Tamil Nadu.

Botany: The genus Cassia, belonging to the family Caesalpiniaceae, comprises of a number of species, namely,

C. senna Linn. syn. C. angustifolia Vahl.

C. absus Linn.

C. alata Linn.

C. auriculata Linn.

C. burmanni Wight. syn. C. obovata (Linn.) Collad.

C. glauca Lam.

C. javanica Linn.

C. mimosoides Linn.

C. obtusifolia Linn. syn. C. tora Linn.

C. occidentalis Linn.

C. pumila Lam.

C. slamea Lam.

C. acutifolia Delile.

C. sophera Linn.

C. senna is a shrub or undershrub, 60-75cm in height with pale subterete or obtusely angled erect or spreading branches. Leaves are paripinnate. Leaflets are 5-8 in number, ovate-lanceolate and glabrous. Flowers are yellowish, many and arranged in axillary racemes. Fruits are flat legumes, greenish brown to dark brown and nearly smooth (Chopra et al,1980, Warrier et al,1994).

In commerce, the leaves and pods obtained from C. senna are known as “ Tinnevelly Senna” and those from C. acutifolia Delile. as “Alexandrian Senna”. The leaves of C. acutifolia are narrower than C. senna, otherwise both resemble to a large extent (Thakur et al, 1989). All the true Sennas have the portions of their leaves unequally divided. In some kinds the lower part of one side is reduced to little more than a line in breadth, while the other is from a quarter to half an inch in breadth. The drug known under the name of East Indian Senna is nearly free from adulteration; and as its properties appear identical with those of the Alexandrian and the price being less, it probably will supersede it in general practice. Its size and shape readily identify it (Graves, 1996).

Agrotechnology: The plant requires a mild subtropical climate with warm winters which are free from frost for its growth. Semiarid areas with adequate irrigation facilities are ideal for cultivation. Areas having high rainfall, humidity and poor drainage are not suitable. Light or medium loamy soils with adequate drainage and pH varying from 7.0-8.2 are preferable. In South India both summer and winter crops are possible. The plant is propagated by seeds. The seed rate required is 15-20kg/ha. Seeds are sown in October-November (winter rainfed crop) or in February-March (irrigated crop). Higher seed rate is required for unirrigated crop. Seeds are sown in lines 30cm apart. Application of 5-10t of FYM/ha before planting or raising a green manure crop is beneficial. About 40kg N and 25-50kg P2O5/ha applied as basal dressing and 40kg N/ha applied in 2 split dozes as top dressing gave better yield. While the rainfed crop is grown without irrigation, the irrigated crop requires 5-8 light irrigations during the entire growing season. The crop requires 2-3 weedings and hoeings in order to keep it free from weeds. Alternaria alternata causes leaf spot and dieback but the disease is not serious. In North India, the plant is attacked by the larvae of butterfly Catopsilia pyranthe which can be controlled by planting the crop in March-April instead of June-July. Under irrigated conditions, the first crop is obtained after 90 days of planting. The leaves are stripped by hand when they are fully green, thick and bluish-green in colour. The second crop is taken 4 weeks after the first harvest and the third 4-6 weeks after the second one. The last harvest of leaves is done when the entire crop is harvested along with the pods. Yield under irrigated conditions is nearly1.4t of leaves and 150kg pods/ha and under unirrigated conditions is 500-600kg leaves and 80-100kg pods/ha. The leaves are dried in thin layers under shade so as to retain the green colour and the pods are hung for 10-12 days to get dried. The leaves and pods are cleaned, graded and marketed (Husain et al, 1993).

Properties and Activity: Leaves contain glucose, fructose, sucrose and pinnitol. Mucilage consists of galactose, arabinose, rhamnose and galacturonic acid. Leaves also contain sennoside-C(8,8’- diglucoside of rhein-aloe-emodin-dianthrone). Pods contain sennosides A and B, glycoside of anthraquinones rhein and chrysophanic acid. Seeds contain -sitosterol (Husain et al, 1992). Leaves and pods also contain 0.33% -sterol and flavonols-kaempferol, kaempferin, and iso-rhamnetin. Sennoside content of C. acutifolia is higher ranging from 2.5% to 4.5% as compared to C. angustifolia ranging from 1.5 % to 2.5%.

The purgative activity of Senna is attributed to its sennosides. The pods cause lesser griping than the leaves. Leaf and pod is laxative. The leaves are astringent, bitter, sweet, acrid, thermogenic, cathartic, depurative, liver tonic, anthelmintic, cholagogue, expectorant and febrifuge.... indian senna

Barley

See also Wheat Cereals.

Nutritional Profile Energy value (calories per serving): Moderate Protein: Moderate Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: High Sodium: Low Major vitamin contribution: B vitamins, folate Major mineral contribution: Iron, potassium

About the Nutrients in This Food Barley is a high-carbohydrate food, rich in starch and dietary fiber, particu- larly pectins and soluble gums, including beta-glucans, the fiber that makes cooked oatmeal sticky. The proteins in barley are incomplete, limited in the essential amino acid lysine. Barley is a good source of the B vitamin folate. One-half cup cooked barley has 4.5 grams dietary fiber and 12.5 mg folate (3 percent of the R DA for healthy adults).

The Most Nutritious Way to Serve This Food With a calcium-rich food and with a food such as legumes or meat, milk, or eggs that supplies the lysine barley is missing.

Diets That May Restrict or Exclude This Food Gluten-free diet

Buying This Food Look for: Clean, tightly sealed boxes or plastic bags. Stains indicate that something has spilled on the box and may have seeped through to con- taminate the grain inside. * Values are for pearled barley.

Storing This Food Store barley in air- and moisture-proof containers in a cool, dark, dry cabinet. Well protected, it will keep for several months with no loss of nutrients.

Preparing This Food Pick over the barley and discard any damaged or darkened grains.

What Happens When You Cook This Food Starch consists of molecules of the complex carbohydrates amylose and amylopectin packed into a starch granule. When you cook barley in water, its starch granules absorb water mol- ecules, swell, and soften. When the temperature of the liquid reaches approximately 140°F, the amylose and amylopectin molecules inside the granules relax and unfold, breaking some of their internal bonds (bonds between atoms on the same molecule) and forming new bonds between atoms on different molecules. The result is a network that traps and holds water molecules. The starch granules swell and the barley becomes soft and bulky. If you continue to cook the barley, the starch granules will rupture, releasing some of the amylose and amylopectin molecules inside. These molecules will attract and immobilize some of the water molecules in the liquid, which is why a little barley added to a soup or stew will make the soup or stew thicker. The B vitamins in barley are water-soluble. You can save them by serving the barley with the liquid in which it was cooked.

How Other Kinds of Processing Affect This Food Pearling. Pearled barley is barley from which the outer layer has been removed. Milling, the process by which barley is turned into flour, also removes the outer coating (bran) of the grain. Since most of the B vitamins and fiber are concentrated in the bran, both pearled and milled barley are lower in nutrients and fiber than whole barley. Malting. After barley is harvested, the grain may be left to germinate, a natural chemical process during which complex carbohydrates in the grain (starches and beta-glucans) change into sugar. The grain, now called malted barley, is used as the base for several fermented and distilled alcohol beverages, including beer and whiskey.

Medical Uses and/or Benefits To reduce cholesterol levels. The soluble gums and pectins in barley appear to lower the amount of cholesterol circulating in your blood. There are currently two theories to explain how this might work. The first theory is that the pectins form a gel in your stomach that sops up fats and keeps them from being absorbed by your body. The second is that bacteria living in your gut may feed on the beta-glucans in the barley to produce short-chain fatty acids that slow the natural production of cholesterol in your liver. Barley is very rich in beta-glucans; some strains have three times as much as oats. It also has tocotrienol, another chemical that mops up cholesterol.... barley

Beans

(Black beans, chickpeas, kidney beans, navy beans, white beans) See also Bean sprouts, Lentils, Lima beans, Peas, Soybeans.

Nutritional Profile Energy value (calories per serving): Moderate Protein: High Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Very high Sodium: Low Major vitamin contribution: Vitamin B6, folate Major mineral contribution: Iron, magnesium, zinc

About the Nutrients in This Food Beans are seeds, high in complex carbohydrates including starch and dietary fiber. They have indigestible sugars (stachyose and raffinose), plus insoluble cellulose and lignin in the seed covering and soluble gums and pectins in the bean. The proteins in beans are limited in the essential amino acids methionine and cystine.* All beans are a good source of the B vitamin folate, and iron. One-half cup canned kidney beans has 7.5 g dietary fiber, 65 mcg folate (15 percent of the R DA), and 1.6 mg iron (11 percent of the R DA for a woman, 20 percent of the R DA for a man). Raw beans contain antinutrient chemicals that inactivate enzymes required to digest proteins and carbohydrates. They also contain factors that inactivate vitamin A and also hemagglutinins, substances that make red blood cells clump together. Cooking beans disarms the enzyme inhibi- tors and the anti-vitamin A factors, but not the hemagglutinins. However, the amount of hemagglutinins in the beans is so small that it has no mea- surable effect in your body. * Soybeans are t he only beans t hat contain proteins considered “complete” because t hey contain sufficient amounts of all t he essent ial amino acids. The Folate Content of ½ Cup Cooked Dried Beans

  Bean   Folate (mcg)
Black beans 129
Chickpeas 191
Kidney beans canned 65
Navy beans 128
Pinto beans 147
  Source: USDA Nut rient Database: w w w.nal.usda.gov/fnic/cgibin /nut _search.pl, Nutritive Value of Foods, Home and Gardens Bullet in No. 72 (USDA, 1989).

The Most Nutritious Way to Serve This Food Cooked, to destroy antinutrients. With grains. The proteins in grains are deficient in the essential amino acids lysine and isoleucine but contain sufficient tryptophan, methionine, and cystine; the proteins in beans are exactly the opposite. Together, these foods provide “complete” proteins. With an iron-rich food (meat) or with a vitamin C-rich food (tomatoes). Both enhance your body’s ability to use the iron in the beans. The meat makes your stomach more acid (acid favors iron absorption); the vitamin C may convert the ferric iron in beans into ferrous iron, which is more easily absorbed by the body.

Diets That May Restrict or Exclude This Food Low-calcium diet Low-fiber diet Low-purine (antigout) diet

Buying This Food Look for: Smooth-skinned, uniformly sized, evenly colored beans that are free of stones and debris. The good news about beans sold in plastic bags is that the transparent material gives you a chance to see the beans inside; the bad news is that pyridoxine and pyridoxal, the natural forms of vitamin B6, are very sensitive to light. Avoid: Beans sold in bulk. Some B vitamins, such as vitamin B6 (pyridoxine and pyridoxal), are very sensitive to light. In addition, open bins allow insects into the beans, indicated by tiny holes showing where the bug has burrowed into or through the bean. If you choose to buy in bulk, be sure to check for smooth skinned, uniformly sized, evenly colored beans free of holes, stones, and other debris.

Storing This Food Store beans in air- and moistureproof containers in a cool, dark cabinet where they are pro- tected from heat, light, and insects.

Preparing This Food Wash dried beans and pick them over carefully, discarding damaged or withered beans and any that float. (Only withered beans are light enough to float in water.) Cover the beans with water, bring them to a boil, and then set them aside to soak. When you are ready to use the beans, discard the water in which beans have been soaked. Some of the indigestible sugars in the beans that cause intestinal gas when you eat the beans will leach out into the water, making the beans less “gassy.”

What Happens When You Cook This Food When beans are cooked in liquid, their cells absorb water, swell, and eventually rupture, releasing the pectins and gums and nutrients inside. In addition, cooking destroys antinutri- ents in beans, making them more nutritious and safe to eat.

How Other Kinds of Processing Affect This Food Canning. The heat of canning destroys some of the B vitamins in the beans. Vitamin B is water-soluble. You can recover all the lost B vitamins simply by using the liquid in the can, but the liquid also contains the indigestible sugars that cause intestinal gas when you eat beans. Preprocessing. Preprocessed dried beans have already been soaked. They take less time to cook but are lower in B vitamins.

Medical Uses and/or Benefits Lower risk of some birth defects. As many as two of every 1,000 babies born in the United States each year may have cleft palate or a neural tube (spinal cord) defect due to their moth- ers’ not having gotten adequate amounts of folate during pregnancy. The current R DA for folate is 180 mcg for a woman and 200 mcg for a man, but the FDA now recommends 400 mcg for a woman who is or may become pregnant. Taking a folate supplement before becoming pregnant and continuing through the first two months of pregnancy reduces the risk of cleft palate; taking folate through the entire pregnancy reduces the risk of neural tube defects. Lower risk of heart attack. In the spring of 1998, an analysis of data from the records for more than 80,000 women enrolled in the long-run ning Nurses Health Study at Har vard School of Public Health/ Brigham and Woman’s Hospital in Boston demonstrated that a diet providing more than 400 mcg folate and 3 mg vitamin B6 a day from either food or supple- ments, more than t wice the current R DA for each, may reduce a woman’s risk of heart attack by almost 50 percent. A lthough men were not included in the analysis, the results are assumed to apply to them as well. NOT E : Beans are high in B6 as well as folate. Fruit, green leaf y vegetables, whole grains, meat, fish, poultr y, and shellfish are good sources of vitamin B6. To reduce the levels of serum cholesterol. The gums and pectins in dried beans and peas appear to lower blood levels of cholesterol. Currently there are two theories to explain how this may happen. The first theory is that the pectins in the beans form a gel in your stomach that sops up fats and keeps them from being absorbed by your body. The second is that bacteria in the gut feed on the bean fiber, producing short-chain fatty acids that inhibit the production of cholesterol in your liver. As a source of carbohydrates for people with diabetes. Beans are digested very slowly, produc- ing only a gradual rise in blood-sugar levels. As a result, the body needs less insulin to control blood sugar after eating beans than after eating some other high-carbohydrate foods (such as bread or potato). In studies at the University of Kentucky, a bean, whole-grain, vegetable, and fruit-rich diet developed at the University of Toronto enabled patients with type 1 dia- betes (who do not produce any insulin themselves) to cut their daily insulin intake by 38 percent. Patients with type 2 diabetes (who can produce some insulin) were able to reduce their insulin injections by 98 percent. This diet is in line with the nutritional guidelines of the American Diabetes Association, but people with diabetes should always consult with their doctors and/or dietitians before altering their diet. As a diet aid. Although beans are high in calories, they are also high in bulk (fiber); even a small serving can make you feel full. And, because they are insulin-sparing, they delay the rise in insulin levels that makes us feel hungry again soon after eating. Research at the University of Toronto suggests the insulin-sparing effect may last for several hours after you eat the beans, perhaps until after the next meal.

Adverse Effects Associated with This Food Intestinal gas. All legumes (beans and peas) contain raffinose and stachyose, complex sug- ars that human beings cannot digest. The sugars sit in the gut and are fermented by intestinal bacteria which then produce gas that distends the intestines and makes us uncomfortable. You can lessen this effect by covering the beans with water, bringing them to a boil for three to five minutes, and then setting them aside to soak for four to six hours so that the indigestible sugars leach out in the soaking water, which can be discarded. Alternatively, you may soak the beans for four hours in nine cups of water for every cup of beans, discard the soaking water, and add new water as your recipe directs. Then cook the beans; drain them before serving. Production of uric acid. Purines are the natural metabolic by-products of protein metabo- lism in the body. They eventually break down into uric acid, sharp cr ystals that may concentrate in joints, a condition known as gout. If uric acid cr ystals collect in the urine, the result may be kidney stones. Eating dried beans, which are rich in proteins, may raise the concentration of purines in your body. Although controlling the amount of purines in the diet does not significantly affect the course of gout (which is treated with allopurinol, a drug that prevents the formation of uric acid cr ystals), limiting these foods is still part of many gout regimens.

Food/Drug Interactions Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyramine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. If you eat a food containing tyramine while you are taking an M AO inhibitor, you cannot effectively eliminate the tyramine from your body. The result may be a hypertensive crisis. Some nutrition guides list dried beans as a food to avoid while using M AO inhibitors.... beans

Goa Bean

Psophocarpus tetragonolobus

Description: The goa bean is a climbing plant that may cover small shrubs and trees. Its bean pods are 22 centimeters long, its leaves 15 centimeters long, and its flowers are bright blue. The mature pods are 4-angled, with jagged wings on the pods.

Habitat and Distribution: This plant grows in tropical Africa, Asia, the East Indies, the Philippines, and Taiwan. This member of the bean (legume) family serves to illustrate a kind of edible bean common in the tropics of the Old World. Wild edible beans of this sort are most frequently found in clearings and around abandoned garden sites. They are more rare in forested areas.

Edible Parts: You can eat the young pods like string beans. The mature seeds are a valuable source of protein after parching or roasting them over hot coals. You can germinate the seeds (as you can many kinds of beans) in damp moss and eat the resultant sprouts. The thickened roots are edible raw. They are slightly sweet, with the firmness of an apple. You can also eat the young leaves as a vegetable, raw or steamed.... goa bean

Medicinal Yams

Dioscorea spp.

Dioscoreaceae

The growing need for steroidal drugs and the high cost of obtaining them from animal sources led to a widespread search for plant sources of steroidal sapogenins, which ultimately led to the most promising one. It is the largest genus of the family constituted by 600 species of predominantly twining herbs. Among the twining species, some species twine clockwise while others anti-clockwise (Miege, 1958). All the species are dioceous and rhizomatous. According to Coursey (1967), this genus is named in honour of the Greek physician Pedenios Dioscorides, the author of the classical Materia Medica Libri Quinque. Some of the species like D. alata and D. esculenta have been under cultivation for a long time for their edible tubers. There are about 15 species of this genus containing diosgenin. Some of them are the following (Chopra et al, 1980).

D. floribunda Mart. & Gal.

D. composita Hemsl; syn. D. macrostachya Benth.

D. deltoidea Wall. ex Griseb; syn. D. nepalensis Sweet ex Bernardi.

D. aculeata Linn. syn. D. esculenta

D. alata Linn. syn. D. atropurpurea Roxb.

D. Globosa Roxb; D. purpurea Roxb; D. rubella Roxb.

D. bulbifera Linn. syn. D. crispata Roxb.

D. pulchella Roxb.; D. sativa Thunb. Non Linn.

D. versicolor Buch. Ham. Ex Wall.

D. daemona Roxb. syn. D. hispida Dennst.

D. oppositifolia Linn.

D. pentaphylla Linn. syn. D. jacquemontii Hook. f.

D. triphylla Linn.

D. prazeri Prain & Burkil syn. D. clarkei Prain & Burkill

D. deltoidea Wall. var. sikkimensis Prain

D. sikkimensis Prain & Burkill

Among the above said species, D. floribunda, D. composita and D. deltoidea are widely grown for diosgenin production.

1. D. floribunda Mart. & Gal D. floribunda Mart. & Gal. is an introduction from central America and had wide adaptation as it is successfully grown in Karnataka, Assam, Meghalaya, Andaman and Goa. The vines are glabrous and left twining. The alternate leaves are borne on slender stems and have broadly ovate or triangular ovate, shallowly cordate, coriaceous lamina with 9 nerves. The petioles are 5-7cm long, thick and firm. Variegation in leaves occurs in varying degrees. The male flowers are solitary and rarely in pairs. Female flowers have divericate stigma which is bifid at apex. The capsule is obovate and seed is winged all round. The tubers are thick with yellow coloured flesh, branched and growing upto a depth of 30cm (Chadha et al, 1995).

2. D. composita Hemsl.

D. composita Hemsl. according to Knuth (1965) has the valid botanical name as D. macrostachya Benth. However, D. composita is widely used in published literature. It is a Central American introduction into Goa, Jammu, Bangalore, Anaimalai Hills of Tami Nadu and Darjeeling in W. Bengal. The vines are right twinning and nearly glabrous. The alternate leaves have long petioles, membraneous or coriaceous lamina measuring upto 20x18cm, abruptly acute or cuspidate-acuminate, shallowly or deeply cordate, 7-9 nerved. The fasciculate-glomerate inflorescence is single or branched with 2 or 3 sessile male flowers having fertile stamens. Male fascicle is 15-30cm long. The female flowers have bifid stigma. Tubers are large, white and deep-rooted (upto 45cm) (Chadha et al, 1995).

3. D. deltoidea Wall. ex. Griseb.

D. deltoidea Wall. ex. Griseb. is distributed throughout the Himalayas at altitudes of 1000-3000m extending over the states of Jammu-Kashmir, H. P, U. P, Sikkim and further into parts of W. Bengal. The glabrous and left twining stem bears alternate petiolate leaves. The petioles are 5-12 cm long. The lamina is 5-15cm long and 4-12cm wide widely cordate. The flowers are borne on axillary spikes, male spikes 8-40cm long and stamens 6. Female spikes are 15cm long, 3. 5cm broad and 4-6 seeded. Seeds are winged all round. Rhizomes are lodged in soil, superficial, horizontal, tuberous, digitate and chestnut brown in colour (Chadha et al, 1995). D. deltoidea tuber grows parallel to ground covered by small scale leaves and is described as rhizome. The tubers are morphologically cauline in structure with a ring of vascular bundles in young tubers which appear scattered in mature tubers (Purnima and Srivastava, 1988). Visible buds are present unlike in D. floribunda and D. composita where the buds are confined to the crown position (Selvaraj et al, 1972).

Importance of Diosgenin: Diosgenin is the most important sapogenin used as a starting material for synthesis of a number of steroidal drugs. For commercial purposes, its -isomer, yamogenin is also taken as diosgenin while analysing the sample for processing. Various steroidal drugs derived from diosgenin by artificial synthesis include corticosteroids, sex hormones, anabolic steroids and oral contraceptives. Corticosteroids are the most important group of steroidal drugs synthesized from diosgenin. First group of corticosteroids regulates carbohydrate and protein metabolism. The second group consists of aldosterone, which controls balance of potassium, sodium and water in the human body. The glucocorticoids in the form of cortisone and hydrocortisone are used orally, intramuscularly or topically for treatment of rheumatoid arthritis, rheumatic fever, other collegen diseases, ulcerative colitis, certain cases of asthma and a number of allergic diseases affecting skin, eye and the ear. These are also used for treatment of gout and a variety of inflammations of skin, eye and ear and as replacement therapy in Addison’s diseases. The minerato corticoides, desoxycorticosterone or desoxycortone are used in restoring kidney functions in cases of cortical deficiency and Addison’s disease.

Both male and female sex hormones are also synthesized from disosgenin. The main male sex hormone (androgen) which is produced from disogenin is testosterone. The main female sex hormones produced are oestrogen and progesterone. Recently oestrogen has also been used in cosmetic lotions and creams to improve the tone and colour of skin. One of the main uses of progesterone during recent years has been as antifertility agent for oral contraceptives. These artificial steroids have increased oral activity and fewer side effects, as they can be used in reduced doses. Oral contraceptives are also used for animals like pigs, cows and sheep to control fertility and to give birth at a prescribed period in a group of animals at the same time. These compounds are also used to reduce the interval between the lactation periods to have more milk and meat production. Anti-fertility compounds are also used as a pest-control measure for decreasing the multiplication of pests like rodents, pigeons and sea gulls (Husain et al, 1979).

Although yam tubers contain a variety of chemical substances including carbohydrates, proteins, alkaloids and tannins, the most important constituents of these yams are a group of saponins which yield sapogenins on hydrolysis. The most imp ortant sapogenin found in Dioscorea are diosgenin, yamogenin and pannogenin. Diosgenin is a steroid drug precursor. The diogenin content varies from 2-7% depending on the age of the tubers. Saponins including 5 spirastanol glucoside and 2 furostanol glucoside, 4 new steroid saponins, floribunda saponins C, D, E and F. Strain of A and B are obtained from D. floribunda (Husain et al, 1979). Rhizomes of D. deltoidea are a rich source of diosgenin and its glycoside. Epismilagenin and smilagenone have been isolated from D. deltoidea and D. prazeri (Chakravarti et al, 1960; 1962). An alkaloid dioscorine has been known to occur in D. hispida (Bhide et al,1978). Saponin of D. prazeri produced a fall of blood pressure when given intravenously and saponin of D. deltoidea has no effect on blood pressure (Chakravarti et al,1963). Deltonin, a steroidal glycoside, isolated from rhizomes of D. deltoidea showed contraceptive activity (Biokova et al, 1990).

Agrotechnology: Dioscorea species prefer a tropical climate without extremity in temperature. It is adapted to moderate to heavy rainfall area. Dioscorea plants can be grown in a variety of soils, but light soil is good, as harvesting of tubers is easier in such soils. The ideal soil pH is 5.5-6.5 but tolerates fairly wide variation in soil pH. Dioscorea can be propagated by tuber pieces, single node stem cuttings or seed. Commercial planting is normally established by tuber pieces only. Propagation through seed progeny is variable and it may take longer time to obtain tuber yields. IIHR, Bangalore has released two improved varieties, FB(c) -1, a vigorously growing strain relatively free from diseases and Arka Upkar, a high yielding clone. Three types of tuber pieces can be distinguished for propagation purpose, viz. (1) crown (2) median and (3) tip, of which crowns produce new shoots within 30 days and are therefore preferred. Dipping of tuber pieces for 5 minutes in 0.3% solution of Benlate followed by dusting the cut ends with 0.3% Benlate in talcum powder in mo ist sand beds effectively checks the tuber rot. The treatment is very essential for obtaining uniform stand of the crop. The best time of planting is the end of April so that new sprouts will grow vigorously during the rainy season commencing in June in India. Land is to be prepared thoroughly until a fine tilth is obtained. Deep furrows are made at 60cm distance with the help of a plough. The stored tuber pieces which are ready for planting is to be planted in furrows with 30cm between the plants for one year crop and 45cm between the plants for 2 year crop at about 0.5 cm below soil level. The new sprouts are to be staked immediately. After sprouting is complete, the plants are to be earthed up. Soil from the ridges may be used for earthing up so that the original furrows will become ridges and vice versa. Dioscorea requires high organic matter for good tuber formation. Besides a basal doze of 18-20t of FYM/ha, a complete fertilizer dose of 300kg N, 150kg P2O5 and K2O each are to be applied per hectare. P and K are to be applied in two equal doses one after the establishment of the crop during May-June and the other during vigorous growth period of the crop (August- September). Irrigation may be given at weekly intervals in the initial stage and afterwards at about 10 days interval. Dioscorea vines need support for their optimum growth and hence the vines are to be trailed over pandal system or trellis. Periodic hand weeding is essential for the first few months. Intercropping with legumes has been found to smother weeds and provide extra income. The major pests of Dioscorea are the aphids and red spider mites. Aphids occur more commonly on young seedlings and vines. Young leaves and vine tips eventually die if aphids are not controlled. Red spider mites attack the underside of the leaves at the base near the petiole. Severe infestations result in necrotic areas, which are often attacked by fungi. Both aphids and spider mites can be very easily controlled by Kelthane. No serious disease is reported to infect this crop. The tubers grow to about 25-30 cm depth and hence harvesting is to be done by manual labour. The best season for harvesting is Feb-March, coinciding with the dry period. On an average 50-60t/ha of fresh tubers can be obtained in 2 years duration. Diosgenin content tends to increase with age, 2.5% in first year and 3-3.5% in the second year. Hence, 2 year crop is economical (Kumar et al, 1997).... medicinal yams

Diet - Vegan

 A vegan is a strict vegetarian who does not eat meat, fish, eggs, milk and dairy products generally, He, or she, eats no animal products at all. By selecting a number of products from the plant kingdom they claim their diet is adequate.

As the Vegan diet is deficient in Vitamin B12 which may lead to anaemia, supplements are available. Some Vegan products have this vitamin added.

Their rule is to combine legumes with other cereals, seeds or nuts at the same meal. The combination is claimed to be equal to one animal based. ... diet - vegan

Blackberries

(Boysenberries, dewberries, youngberries)

Nutritional Profile Energy value (calories per serving): Low Protein: Low Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Moderate Sodium: Low Major vitamin contribution: Vitamin A, vitamin C Major mineral contribution: Calcium

About the Nutrients in This Food Blackberries have no starch but do contain sugars and dietary fiber, pri- marily pectin, which dissolves as the fruit matures. Unripe blackberries contain more pectin than ripe ones. One-half cup fresh blackberries has 3.8 g dietary fiber, 15 mg vitamin C (20 percent of the R DA for a woman, 17 percent of the R DA for a man), and 18 mcg folate (5 percent of the R DA).

The Most Nutritious Way to Serve This Food Fresh or lightly cooked.

Buying This Food Look for: Plump, firm dark berries with no hulls. A firm, well-rounded berry is still moist and fresh; older berries lose moisture, which is why their skin wrinkles. Avoid: Baskets of berries with juice stains or liquid leaking out of the berries. The stains and leaks are signs that there are crushed—and possibly moldy—berries inside.

Storing This Food Cover berries and refrigerate them. Then use them in a day or two. Do not wash berries before storing. The moisture collects in spaces on the surface of the berries that may mold in the refrigerator. Also, handling the berries may damage their cells, releasing enzymes that can destroy vitamins.

Preparing This Food R inse the berries under cool running water, then drain them and pick them over carefully to remove all stems and leaves.

What Happens When You Cook This Food Cooking destroys some of the vitamin C in fresh blackberries and lets water-soluble B vitamins leach out. Cooked berries are likely to be mushy because the heat and water dis- solve their pectin and the skin of the berry collapses. Cooking may also change the color of blackberries, which contain soluble red anthocyanin pigments that stain cooking water and turn blue in basic (alkaline) solutions. Adding lemon juice to a blackberry pie stabilizes these pigments; it is a practical way to keep the berries a deep, dark reddish blue.

How Other Kinds of Processing Affect This Food Canning. The intense heat used in canning fruits reduces the vitamin C content of black- berries. Berries packed in juice have more nutrients, ounce for ounce, than berries packed in either water or syrup.

Medical Uses and/or Benefits Anticancer activity. Blackberries are rich in anthocyanins, bright-red plant pigments that act as antioxidants—natural chemicals that prevent free radicals (molecular fragments) from joining to form carcinogenic (cancer-causing) compounds. Some varieties of blackberries also contain ellagic acid, another anticarcinogen with antiviral and antibacterial properties.

Adverse Effects Associated with This Food Allergic reaction. Hives and angioedema (swelling of the face, lips, and eyes) are common allergic responses to berries, virtually all of which have been known to trigger allergic reactions. According to the Merck Manual, berries are one of the 12 foods most likely to trigger classic food allergy symptoms. The others are chocolate, corn, eggs, fish, legumes (peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see w h eat cer ea ls).... blackberries

Guandúl

Pigeon pea (Cajanus cajan).

Plant Part Used: Leaf, root, seed (bean).

Dominican Medicinal Uses: Seeds: cooked as a legume for nutrition. Leaf: poultice, applied externally for arthritis and joint pain. Root: strong decoction, to induce abortion.

Safety: Seeds widely consumed and generally considered safe; plant extracts have shown toxic effects in animal studies; more information needed to determine safety of plant in humans.

Laboratory & Preclinical Data: In vitro: antibacterial, antimicrobial, antigonorrheal (leaf extracts); antimalarial (root constituents); antisickling (seed extract).

* See entry for Guandúl in “Part 3: Dominican Medicinal Plant Profiles” of this book for more information, including references.... guandúl

Hypoglycemia

Low blood sugar. It can be an actual clinical condition (rather rare), but the term is usually applied to LABILE blood sugar, where the highs are socially acceptable, if zappy, but the lows cause headaches, depression...and sugar cravings...which only kick the sugars UP...which forces the sugars DOWN...etc. This is a subclinical condition that usually goes nowhere, at least clinically, but can drive you (or your companion) crazy. Some normal and healthy food have a rapid blood presence and can leave you hanging; fruits, potatoes and carrot juice are LOUSY...legumes, particularly beans, supply slow and extended release of calories...mostly because of high levels of soluble fiber...and laborious digestion. Even adding such dietarily useless items like Psyllium Seed and Chia Seed can do wonders to slow down sugar spiking.... hypoglycemia

Blueberries

(Huckleberries)

Nutritional Profile Energy value (calories per serving): Low Protein: Low Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Moderate Sodium: Low Major vitamin contribution: Vitamin C Major mineral contribution: Calcium

About the Nutrients in This Food Blueberries have some protein and a little fat. They have no starch but do contain sugars and dietary fiber—primarily pectin, which dissolves as the fruit matures—and lignin in the seeds. (The difference between blueber- ries and huckleberries is the size of their seeds; blueberries have smaller ones than huckleberries.) One-half cup fresh blueberries has 1.5 g dietary fiber and 9.5 mg. vitamin C (13 percent of the R DA for a woman, 11 percent of the R DA for a man).

The Most Nutritious Way to Serve This Food Fresh, raw, or lightly cooked.

Buying This Food Look for: Plump, firm dark-blue berries. The whitish color on the ber- ries is a natural protective coating. Avoid: Baskets of berries with juice stains or liquid leaking out of the berries. The stains and leaks are signs that there are crushed (and possibly moldy) berries inside.

Storing This Food Cover berries and refrigerate them. Then use them in a day or two. Do not wash berries before storing. The moisture increases the chance that they will mold in the refrigerator. Also, handling the berries can damage them, tearing cells and releas- ing enzymes that will destroy vitamins. Do not store blueberries in metal containers. The anthocyanin pigments in the berries can combine with metal ions to form dark, unattractive pigment/metal compounds that stain the containers and the berries.

Preparing This Food R inse the berries under cool running water, then drain them and pick them over carefully to remove all stems, leaves, and hard (immature) or soft (over-ripe) berries.

What Happens When You Cook This Food Cooking destroys some of the vitamin C in fresh blueberries and lets water-soluble B vitamins leach out. Cooked berries are likely to be mushy because heat dissolves the pectin inside. Blueberries may also change color when cooked. The berries are colored with blue anthocyanin pigments. Ordinarily, anthocyanin-pigmented fruits and vegetables turn red- dish in acids (lemon juice, vinegar) and deeper blue in bases (baking soda). But blueberries also contain yellow pigments (anthoxanthins). In a basic (alkaline) environments, as in a batter with too much baking soda, the yellow and blue pigments will combine, turning the blueberries greenish blue. Adding lemon juice to a blueberry pie stabilizes these pigments; it is a practical way to keep the berries a deep, dark reddish blue.

How Other Kinds of Processing Affect This Food Canning and freezing. The intense heat used in canning the fruit or in blanching it before freezing reduces the vitamin C content of blueberries by half.

Medical Uses and/or Benefits Anticancer activity. According to the U.S. Department of Agriculture, wild blueberries rank first among all fruits in antioxidant content; cultivated blueberries (the ones sold in most food markets) rank second. Antioxidants are natural chemicals that inactivate free radicals, molecule fragments that can link together to form cancer-causing compounds. Several ani- mal studies attest to the ability of blueberries to inhibit the growth of specific cancers. For example, in 2005, scientists at the University of Georgia reported in the journal Food Research International that blueberry extracts inhibited the growth of liver cancer cells in laboratory settings. The following year, researchers at Rutgers University (in New Jersey) delivered data to the national meeting of the American Chemical Society from a study in which laboratory rats fed a diet supplemented with pterostilbene, another compound extracted from blueber- ries, had 57 percent fewer precancerous lesions in the colon than rats whose diet did not contain the supplement. The findings, however, have not been confirmed in humans. Enhanced memory function. In 2008, British researchers at the schools of Food Biosciences and Psychology at the University of Reading and the Institute of Biomedical and Clinical Sciences at the Peninsula Medical School (England) reported that adding blueberries to one’s normal diet appears to improve both long-term and short-term memory, perhaps because anthocyanins and flavonoids (water-soluble pigments in the berries) activate signals in the hippocampus, a part of the brain that controls learning and memory. If confirmed, the data would support the role played by diet in maintaining memory and brain function. Urinary antiseptic. A 1991 study at the Weizmann Institute of Science (Israel) suggests that blueberries, like cr anber r ies, contain a compound that inhibits the ability of Escherichia coli, a bacteria commonly linked to urinary infections, to stick to the wall of the bladder. If it cannot cling to cell walls, the bacteria will not cause an infection. This discovery lends some support to folk medicine, but how the berries work, how well they work, or in what “dos- ages” remains to be proven.

Adverse Effects Associated with This Food Allergic reaction. Hives and angiodemea (swelling of the face, lips, and eyes) are common allergic responses to berries, virtually all of which have been reported to trigger these reac- tions. According to the Merck Manual, berries are one of the 12 foods most likely to trigger classic food allergy symptoms. The others are chocolate, corn, eggs, fish, legumes (peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see wheat cer ea ls).... blueberries

Bread

Nutritional Profile Energy value (calories per serving): Moderate Protein: Moderate Fat: Low to moderate Saturated fat: Low to high Cholesterol: Low to high Carbohydrates: High Fiber: Moderate to high Sodium: Moderate to high Major vitamin contribution: B vitamins Major mineral contribution: Calcium, iron, potassium

About the Nutrients in This Food All commercially made yeast breads are approximately equal in nutri- tional value. Enriched white bread contains virtually the same amounts of proteins, fats, and carbohydrates as whole wheat bread, although it may contain only half the dietary fiber (see flour). Bread is a high-carbohydrate food with lots of starch. The exact amount of fiber, fat, and cholesterol in the loaf varies with the recipe. Bread’s proteins, from grain, are low in the essential amino acid lysine. The most important carbohydrate in bread is starch; all breads contain some sugar. Depending on the recipe, the fats may be highly saturated (butter or hydrogenated vegetable fats) or primarily unsaturated (vegetable fat). All bread is a good source of B vitamins (thiamin, riboflavin, niacin), and in 1998, the Food and Drug Administration ordered food manufactur- ers to add folates—which protect against birth defects of the spinal cord and against heart disease—to flour, rice, and other grain products. One year later, data from the Framingham Heart Study, which has followed heart health among residents of a Boston suburb for nearly half a cen- tury, showed a dramatic increase in blood levels of folic acid. Before the fortification of foods, 22 percent of the study participants had a folic acid deficiency; after, the number fell to 2 percent. Bread is a moderately good source of calcium, magnesium, and phos- phorus. (Breads made with milk contain more calcium than breads made without milk.) Although bread is made from grains and grains contain phytic acid, a natural antinutrient that binds calcium ions into insoluble, indigestible compounds, the phytic acid is inactivated by enzyme action during leavening. Bread does not bind calcium. All commercially made breads are moderately high in sodium; some contain more sugar than others. Grains are not usually considered a good source of iodine, but commer- cially made breads often pick up iodine from the iodophors and iodates used to clean the plants and machines in which they are made. Homemade breads share the basic nutritional characteristics of commercially made breads, but you can vary the recipe to suit your own taste, lowering the salt, sugar, or fat and raising the fiber content, as you prefer.

The Most Nutritious Way to Serve This Food As sandwiches, with cheese, milk, eggs, meat, fish, or poultry. These foods supply the essen- tial amino acid lysine to “complete” the proteins in grains. With beans or peas. The proteins in grains are deficient in the essential amino acids lysine and isoleucine and rich in the essential amino acids tryptophan, methionine, and cystine. The proteins in legumes (beans and peas) are exactly the opposite.

Diets That May Restrict or Exclude This Food Gluten-free diet (excludes breads made with wheat, oats, rye, buckwheat and barley flour) Lactose-free diet Low-fiber diet (excludes coarse whole-grain breads) Low-sodium diet

Buying This Food Look for: Fresh bread. Check the date on closed packages of commercial bread.

Storing This Food Store bread at room temperature, in a tightly closed plastic bag (the best protection) or in a breadbox. How long bread stays fresh depends to a great extent on how much fat it contains. Bread made with some butter or other fat will keep for about three days at room tempera- ture. Bread made without fat (Italian bread, French bread) will dry out in just a few hours; for longer storage, wrap it in foil, put it inside a plastic bag, and freeze it. When you are ready to serve the French or Italian bread, you can remove it from the plastic bag and put the foil- wrapped loaf directly into the oven. Throw away moldy bread. The molds that grow on bread may produce carcinogenic toxins. Do not store fresh bread in the refrigerator; bread stales most quickly at temperatures just above freezing. The one exception: In warm, humid weather, refrigerating bread slows the growth of molds.

When You Are Ready to Serve This Food Use a serrated knife to cut bread easily.

What Happens When You Cook This Food Toasting is a chemical process that caramelizes sugars and amino acids (proteins) on the surface of the bread, turning the bread a golden brown. This chemical reaction, known both as the browning reaction and the Maillard reaction (after the French chemist who first identified it), alters the structure of the surface sugars, starches, and amino acids. The sugars become indigestible food fiber; the amino acids break into smaller fragments that are no longer nutritionally useful. Thus toast has more fiber and less protein than plain bread. How- ever, the role of heat-generated fibers in the human diet is poorly understood. Some experts consider them inert and harmless; others believe they may be hazardous.

How Other Kinds of Processing Affect This Food Freezing. Frozen bread releases moisture that collects inside the paper, foil, or plastic bag in which it is wrapped. If you unwrap the bread before defrosting it, the moisture will be lost and the bread will be dry. Always defrost bread in its wrappings so that it can reabsorb the moisture that keeps it tasting fresh. Drying. Since molds require moisture, the less moisture a food contains, the less likely it is support mold growth. That is why bread crumbs and Melba toast, which are relatively mois- ture-free, keep better than fresh bread. Both can be ground fine and used as a toasty-flavored thickener in place of flour or cornstarch.

Medical Uses and/or Benefits A lower risk of some kinds of cancer. In 1998, scientists at Wayne State University in Detroit conducted a meta-analysis of data from more than 30 well-designed animal studies mea- suring the anti-cancer effects of wheat bran, the part of grain with highest amount of the insoluble dietary fibers cellulose and lignin. They found a 32 percent reduction in the risk of colon cancer among animals fed wheat bran; now they plan to conduct a similar meta- analysis of human studies. Breads made with whole grain wheat are a good source of wheat bran. NOTE : The amount of fiber per serving listed on a food package label shows the total amount of fiber (insoluble and soluble). Early in 1999, however, new data from the long-running Nurses Health Study at Brigham Women’s Hospital/Harvard University School of Public Health showed that women who ate a high-fiber diet had a risk of colon cancer similar to that of women who ate a low fiber diet. Because this study contradicts literally hundreds of others conducted over the past 30 years, researchers are awaiting confirming evidence before changing dietary recommendations. Calming effect. Mood is affected by naturally occurring chemicals called neurotransmitters that facilitate transmission of impulses between brain cells. The amino acid tryptophan amino acid is the most important constituent of serotonin, a “calming” neurotransmitter. Foods such as bread, which are high in complex carbohydrates, help move tryptophan into your brain, increasing the availability of serotonin.

Adverse Effects Associated with This Food Allergic reactions and/or gastric distress. Bread contains several ingredients that may trigger allergic reactions, aggravate digestive problems, or upset a specific diet, among them gluten (prohibited on gluten-free diets); milk (prohibited on a lactose- and galactose-free diet or for people who are sensitive to milk proteins); sugar (prohibited on a sucrose-free diet); salt (controlled on a sodium-restricted diet); and fats (restricted or prohibited on a controlled-fat, low-cholesterol diet).... bread

Chocolate

(Cocoa, milk chocolate, sweet chocolate)

Nutritional Profile Energy value (calories per serving): Moderate Protein: Low (cocoa powder) High (chocolate) Fat: Moderate Saturated fat: High Cholesterol: None Carbohydrates: Low (chocolate) High (cocoa powder) Fiber: Moderate (chocolate) High (cocoa powder) Sodium: Moderate Major vitamin contribution: B vitamins Major mineral contribution: Calcium, iron, copper

About the Nutrients in This Food Cocoa beans are high-carbohydrate, high-protein food, with less dietary fiber and more fat than all other beans, excepting soy beans. The cocoa bean’s dietary fiber includes pectins and gums. Its proteins are limited in the essential amino acids lysine and isoleucine. Cocoa butter, the fat in cocoa beans, is the second most highly saturated vegetable fat (coconut oil is number one), but it has two redeeming nutritional qualities. First, it rarely turns rancid. Second, it melts at 95°F, the temperature of the human tongue. Cocoa butter has no cholesterol; neither does plain cocoa powder or plain dark chocolate. Cocoa beans have B vitamins (thiamine, riboflavin, niacin) plus min- erals (iron, magnesium, potassium, phosphorus, and copper). All chocolate candy is made from chocolate liquor, a thick paste pro- duce by roasting and grinding cocoa beans. Dark (sweet) chocolate is made of chocolate liquor, cocoa butter, and sugar. Milk chocolate is made of choc- olate liquor, cocoa butter, sugar, milk or milk powder, and vanilla. White * These values apply to plain cocoa powder and plain unsweetened chocolate. Add- ing other foods, such as milk or sugar, changes these values. For example, there is no cholesterol in plain bitter chocolate, but there is cholesterol in milk chocolate. chocolate is made of cocoa butter, sugar, and milk powder. Baking chocolate is unsweetened dark chocolate. The most prominent nutrient in chocolate is its fat. Fat Content in One Ounce of Chocolate

Saturated fat (g) Monounsaturated fat (g) Polyunsaturated fat (g) Cholesterol (mg)
Dark (sweet)
chocolate 5.6 3.2 0.3 0
Milk chocolate 5.9 4.5 0.4 6.6
Baking chocolate 9 5.6 0.3 0
White chocolate 5.5 2.6 0.3 0
  Source: USDA Nut rient Data Laborator y. Nat ional Nut rient Database for Standard Reference. Available online. UR L : http://w w w.nal.usda.gov/fnic/foodcomp/search /. Because chocolate is made from a bean, it also contains dietary fiber and measurable amounts of certain minerals. For example, one ounce of dark chocolate, the most nutritious “eating” chocolate, has 1.6 g dietary fiber, 0.78 mg iron (4 percent of the R DA for a woman, 10 percent of the R DA for a man), 32 mg magnesium (11 percent of the R DA for a woman, 8 percent of the R DA for a man), and .43 mg zinc (5 percent of the R DA for a woman, 4 percent of the R DA for a man). Cocoa beans, cocoa, and chocolate contain caffeine, the muscle stimulant theobro- mine, and the mood-altering chemicals phenylethylalanine and anandamide (see below).

The Most Nutritious Way to Serve This Food With low-fat milk to complete the proteins without adding saturated fat and cholesterol. NOTE : Both cocoa and chocolate contain oxalic acid, which binds with calcium to form cal- cium oxalate, an insoluble compound, but milk has so much calcium that the small amount bound to cocoa and chocolate hardly matters. Chocolate skim milk is a source of calcium.

Diets That May Restrict or Exclude This Food Antiflatulence diet Low-calcium and low-oxalate diet (to prevent the formation of calcium oxalate kidney stones) Low-calorie diet Low-carbohydrate diet Low-fat diet Low-fat, controlled-cholesterol diet (milk chocolates) Low-fiber diet Potassium-regulated (low-potassium) diet

Buying This Food Look for: Tightly sealed boxes or bars. When you open a box of chocolates or unwrap a candy bar, the chocolate should be glossy and shiny. Chocolate that looks dull may be stale, or it may be inexpensively made candy without enough cocoa butter to make it gleam and give it the rich creamy mouthfeel we associate with the best chocolate. (Fine chocolate melts evenly on the tongue.) Chocolate should also smell fresh, not dry and powdery, and when you break a bar or piece of chocolate it should break cleanly, not crumble. One exception: If you have stored a bar of chocolate in the refrigerator, it may splinter if you break it without bringing it to room temperature first.

Storing This Food Store chocolate at a constant temperature, preferably below 78°F. At higher temperatures, the fat in the chocolate will rise to the surface and, when the chocolate is cooled, the fat will solidif y into a whitish powdery bloom. Bloom is unsightly but doesn’t change the chocolate’s taste or nutritional value. To get rid of bloom, melt the chocolate. The chocolate will turn dark, rich brown again when its fat recombines with the other ingredients. Chocolate with bloom makes a perfectly satisfactory chocolate sauce. Dark chocolate (bitter chocolate, semisweet chocolate) ages for at least six months after it is made, as its flavor becomes deeper and more intense. Wrapped tightly and stored in a cool, dry cabinet, it can stay fresh for a year or more. Milk chocolate ages only for about a month after it is made and holds its peak flavor for about three to six months, depending on how carefully it is stored. Plain cocoa, with no added milk powder or sugar, will stay fresh for up to a year if you keep it tightly sealed and cool.

What Happens When You Cook This Food Chocolate burns easily. To melt it without mishap, stir the chocolate in a bowl over a pot of hot water or in the top of a double boiler or put the chocolate in a covered dish and melt it in the microwave (which does not get as hot as a pot on the store). Simple chemistry dictates that chocolate cakes be leavened with baking soda rather than baking powder. Chocolate is so acidic that it will upset the delicate balance of acid (cream of tartar) and base (alkali = sodium bicarbonate = baking soda) in baking powder. But it is not acidic enough to balance plain sodium bicarbonate. That’s why we add an acidic sour-milk product such as buttermilk or sour cream or yogurt to a chocolate cake. Without the sour milk, the batter would be so basic that the chocolate would look red, not brown, and taste very bitter.

How Other Kinds of Processing Affect This Food Freezing. Chocolate freezes and thaws well. Pack it in a moistureproof container and defrost it in the same package to let it reabsorb moisture it gave off while frozen.

Medical Uses and/or Benefits Mood elevator. Chocolate’s reputation for making people feel good is based not only on its caffeine content—19 mg caffeine per ounce of dark (sweet) chocolate, which is one-third the amount of caffeine in a five-ounce cup of brewed coffee—but also on its naturally occurring mood altering chemicals phenylethylalanine and anandamide. Phenylethylalanine is found in the blood of people in love. Anandamide stimulates areas of your brain also affected by the active ingredients in marijuana. (NOTE : As noted by the researchers at the Neurosci- ences Institute in San Diego who identified anandamide in chocolate in 1996, to get even the faintest hint of marijuana-like effects from chocolate you would have to eat more than 25 pounds of the candy all at once.) Possible heart health benefits. Chocolate is rich in catechins, the antioxidant chemicals that give tea its reputation as a heart-protective anticancer beverage (see tea). In addition, a series of studies beginning with those at the USDA Agricultural Research Center in Peoria, Illinois, suggest that consuming foods rich in stearic acid like chocolate may reduce rather than raise the risk of a blood clot leading to a heart attack. Possible slowing of the aging process. Chocolate is a relatively good source of copper, a mineral that may play a role in slowing the aging process by decreasing the incidence of “protein glycation,” a reaction in which sugar molecules ( gly = sugar) hook up with protein molecules in the bloodstream, twisting the protein molecules out of shape and rendering them unusable. This can lead to bone loss, rising cholesterol, cardiac abnormalities, and a slew of other unpleasantries. In people with diabetes, excess protein glycation may be one factor involved in complications such as loss of vision. Ordinarily, increased protein glyca- tion is age-related. But at the USDA Grand Forks Human Nutrition Research Center in North Dakota, agricultural research scientist Jack T. Saari has found that rats on copper-deficient diets experience more protein glycation at any age than other rats. A recent USDA survey of American eating patterns says that most of us get about 1.2 mg copper a day, considerably less than the Estimated Safe and Adequate Daily Dietary Intake (ESADDI) or 1.5 mg to 3 mg a day. Vegetarians are less likely to be copper deficient because, as Saari notes, the foods highest in copper are whole grains, nuts, seeds, and beans, including the cocoa bean. One ounce of dark chocolate has .25 mg copper (8 –17 percent of the ESADDI).

Adverse Effects Associated with This Food Possible loss of bone density. In 2008, a team of Australian researchers at Royal Perth Hos- pital, and Sir Charles Gairdner Hospital published a report in the American Journal of Clinical Nutrition suggesting that women who consume chocolate daily had 3.1 percent lower bone density than women who consume chocolate no more than once a week. No explanation for the reaction was proposed; the finding remains to be confirmed. Possible increase in the risk of heart disease. Cocoa beans, cocoa powder, and plain dark chocolate are high in saturated fats. Milk chocolate is high in saturated fats and cholesterol. Eating foods high in saturated fats and cholesterol increases the amount of cholesterol in your blood and raises your risk of heart disease. NOTE : Plain cocoa powder and plain dark chocolate may be exceptions to this rule. In studies at the USDA Agricultural Research Center in Peoria, Illinois, volunteers who consumed foods high in stearic acid, the saturated fat in cocoa beans, cocoa powder, and chocolate, had a lower risk of blood clots. In addition, chocolate is high in flavonoids, the antioxidant chemicals that give red wine its heart-healthy reputation. Mild jitters. There is less caffeine in chocolate than in an equal size serving of coffee: A five- ounce cup of drip-brewed coffee has 110 to 150 mg caffeine; a five-ounce cup of cocoa made with a tablespoon of plain cocoa powder ( 1/3 oz.) has about 18 mg caffeine. Nonetheless, people who are very sensitive to caffeine may find even these small amounts problematic. Allergic reaction. According to the Merck Manual, chocolate is one of the 12 foods most likely to trigger the classic food allergy symptoms: hives, swelling of the lips and eyes, and upset stomach.* The others are berries (blackberries, blueberries, raspberries, strawberries), corn, eggs, fish, legumes (green peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see wheat cer ea ls).

Food/Drug Interactions Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyra- mine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. Caffeine is a substance similar to tyramine. If you consume excessive amounts of a caffeinated food, such as cocoa or chocolate, while you are taking an M AO inhibitor, the result may be a hypertensive crisis. False-positive test for pheochromocytoma. Pheochromocytoma, a tumor of the adrenal gland, secretes adrenalin, which the body converts to VM A (vanillylmandelic acid). VM A is excreted in urine, and, until recently, the test for this tumor measured the level of VM A in the urine. In the past, chocolate and cocoa, both of which contain VM A, were eliminated from the patient’s diet prior to the test lest they elevate the level of VM A in the urine and produce a false-positive result. Today, more finely drawn tests usually make this unnecessary. * The evidence link ing chocolate to allergic or migraine headaches is inconsistent. In some people, phenylet hylamine (PEA) seems to cause headaches similar to t hose induced by t yramine, anot her pressor amine. The PEA-induced headache is unusual in t hat it is a delayed react ion t hat usually occurs 12 or more hours after t he chocolate is eaten.... chocolate

Eggs

Nutritional Profile Energy value (calories per serving): Moderate Protein: High Fat: High Saturated fat: Moderate Cholesterol: High Carbohydrates: Low Fiber: None Sodium: Moderate to high Major vitamin contribution: Vitamin A, riboflavin, vitamin D Major mineral contribution: Iron, calcium

About the Nutrients in This Food An egg is really three separate foods, the whole egg, the white, and the yolk, each with its own distinct nutritional profile. A whole egg is a high-fat, high-cholesterol, high-quality protein food packaged in a high-calcium shell that can be ground and added to any recipe. The proteins in eggs, with sufficient amounts of all the essential amino acids, are 99 percent digestible, the standard by which all other proteins are judged. The egg white is a high-protein, low-fat food with virtually no cholesterol. Its only important vitamin is riboflavin (vitamin B2), a vis- ible vitamin that gives egg white a slightly greenish cast. Raw egg whites contain avidin, an antinutrient that binds biotin a B complex vitamin for- merly known as vitamin H, into an insoluble compound. Cooking the egg inactivates avidin. An egg yolk is a high-fat, high-cholesterol, high-protein food, a good source of vitamin A derived from carotenes eaten by the laying hen, plus vitamin D, B vitamins, and heme iron, the form of iron most easily absorbed by your body. One large whole egg (50 g/1.8 ounce) has five grams fat (1.5 g satu- rated fat, 1.9 g monounsaturated fat, 0.7 g polyunsaturated fat), 212 mg cholesterol, 244 IU vitamin A (11 percent of the R DA for a woman, 9 percent * Values are for a whole egg. of the R DA for a man), 0.9 mg iron (5 percent of the R DA for a woman, 11 percent of the R DA for a man) and seven grams protein. The fat in the egg is all in the yolk. The protein is divided: four grams in the white, three grams in the yolk.

The Most Nutritious Way to Serve This Food With extra whites and fewer yolks to lower the fat and cholesterol per serving.

Diets That May Restrict or Exclude This Food Controlled-fat, low-cholesterol diet Low-protein diet

Buying This Food Look for: Eggs stored in the refrigerated dair y case. Check the date for freshness. NOTE : In 1998, the FDA and USDA Food Safety and Inspection Service (FSIS) proposed new rules that would require distributors to keep eggs refrigerated on the way to the store and require stores to keep eggs in a refrigerated case. The egg package must have a “refrigera- tion required” label plus safe-handling instructions on eggs that have not been treated to kill Salmonella. Look for: Eggs that fit your needs. Eggs are graded by the size of the yolk and the thick- ness of the white, qualities that affect appearance but not nutritional values. The higher the grade, the thicker the yolk and the thicker the white will be when you cook the egg. A Grade A A egg fried sunny side up will look much more attractive than a Grade B egg prepared the same way, but both will be equally nutritions. Egg sizes ( Jumbo, Extra large, Large, Medium, Small) are determined by how much the eggs weigh per dozen. The color of the egg’s shell depends on the breed of the hen that laid the egg and has nothing to do with the egg’s food value.

Storing This Food Store fresh eggs with the small end down so that the yolk is completely submerged in the egg white (which contains antibacterial properties, nature’s protection for the yolk—or a developing chick embryo in a fertilized egg). Never wash eggs before storing them: The water will make the egg shell more porous, allowing harmful microorganisms to enter. Store separated leftover yolks and whites in small, tightly covered containers in the refrigerator, where they may stay fresh for up to a week. Raw eggs are very susceptible to Salmonella and other bacterial contamination; discard any egg that looks or smells the least bit unusual. Refrigerate hard-cooked eggs, including decorated Easter eggs. They, too, are suscep- tible to Salmonella contamination and should never be left at room temperature.

Preparing This Food First, find out how fresh the eggs really are. The freshest ones are the eggs that sink and lie flat on their sides when submerged in cool water. These eggs can be used for any dish. By the time the egg is a week old, the air pocket inside, near the broad end, has expanded so that the broad end tilts up as the egg is submerged in cool water. The yolk and the white inside have begun to separate; these eggs are easier to peel when hard-cooked. A week or two later, the egg’s air pocket has expanded enough to cause the broad end of the egg to point straight up when you put the egg in water. By now the egg is runny and should be used in sauces where it doesn’t matter if it isn’t picture-perfect. After four weeks, the egg will float. Throw it away. Eggs are easily contaminated with Salmonella microorganisms that can slip through an intact shell. never eat or serve a dish or bever age containing r aw fr esh eggs. sa lmonella is destroyed by cooking eggs to an inter nal temper atur e of 145°f ; egg-milk dishes such as custar ds must be cooked to an inter nal temper atur e of 160°f. If you separate fresh eggs by hand, wash your hands thoroughly before touching other food, dishes, or cooking tools. When you have finished preparing raw eggs, wash your hands and all utensils thoroughly with soap and hot water. never stir cooked eggs with a utensil used on r aw eggs. When you whip an egg white, you change the structure of its protein molecules which unfold, breaking bonds between atoms on the same molecule and forming new bonds to atoms on adjacent molecules. The result is a network of protein molecules that hardens around air trapped in bubbles in the net. If you beat the whites too long, the foam will turn stiff enough to hold its shape even if you don’t cook it, but it will be too stiff to expand natu- rally if you heat it, as in a soufflé. When you do cook properly whipped egg white foam, the hot air inside the bubbles will expand. Ovalbumin, an elastic protein in the white, allows the bubble walls to bulge outward until they are cooked firm and the network is stabilized as a puff y soufflé. The bowl in which you whip the whites should be absolutely free of fat or grease, since the fat molecules will surround the protein molecules in the egg white and keep them from linking up together to form a puff y white foam. Eggs whites will react with metal ions from the surface of an aluminum bowl to form dark particles that discolor the egg-white foam. You can whip eggs successfully in an enamel or glass bowl, but they will do best in a copper bowl because copper ions bind to the egg and stabilize the foam.

What Happens When You Cook This Food When you heat a whole egg, its protein molecules behave exactly as they do when you whip an egg white. They unfold, form new bonds, and create a protein network, this time with molecules of water caught in the net. As the egg cooks, the protein network tightens, squeez- ing out moisture, and the egg becomes opaque. The longer you cook the egg, the tighter the network will be. If you cook the egg too long, the protein network will contract strongly enough to force out all the moisture. That is why overcooked egg custards run and why overcooked eggs are rubbery. If you mix eggs with milk or water before you cook them, the molecules of liquid will surround and separate the egg’s protein molecules so that it takes more energy (higher heat) to make the protein molecules coagulate. Scrambled eggs made with milk are softer than plain scrambled eggs cooked at the same temperature. When you boil an egg in its shell, the air inside expands and begins to escape through the shell as tiny bubbles. Sometimes, however, the force of the air is enough to crack the shell. Since there’s no way for you to tell in advance whether any particular egg is strong enough to resist the pressure of the bubbling air, the best solution is to create a safety vent by sticking a pin through the broad end of the egg before you start to boil it. Or you can slow the rate at which the air inside the shell expands by starting the egg in cold water and letting it warm up naturally as the water warms rather than plunging it cold into boiling water—which makes the air expand so quickly that the shell is virtually certain to crack. As the egg heats, a little bit of the protein in its white will decompose, releasing sulfur that links up with hydrogen in the egg, forming hydrogen sulfide, the gas that gives rot- ten eggs their distinctive smell. The hydrogen sulfide collects near the coolest part of the egg—the yolk. The yolk contains iron, which now displaces the hydrogen in the hydrogen sulfide to form a green iron-sulfide ring around the hard-cooked yolk.

How Other Kinds of Processing Affect This Food Egg substitutes. Fat-free, cholesterol-free egg substitutes are made of pasteurized egg whites, plus artificial or natural colors, flavors, and texturizers (food gums) to make the product look and taste like eggs, plus vitamins and minerals to produce the nutritional equivalent of a full egg. Pasteurized egg substitutes may be used without additional cooking, that is, in salad dressings and eggnog. Drying. Dried eggs have virtually the same nutritive value as fresh eggs. Always refrigerate dried eggs in an air- and moistureproof container. At room temperature, they will lose about a third of their vitamin A in six months.

Medical Uses and/or Benefits Protein source. The protein in eggs, like protein from all animal foods, is complete. That is, protein from animal foods provides all the essential amino acids required by human beings. In fact, the protein from eggs is so well absorbed and utilized by the human body that it is considered the standard by which all other dietary protein is measured. On a scale known as biological value, eggs rank 100 ; milk, 93; beef and fish, 75; and poultry, 72. Vision protection. The egg yolk is a rich source of the yellow-orange carotenoid pigments lutein and zeaxanthin. Both appear to play a role in protecting the eyes from damaging ultraviolet light, thus reducing the risk of cataracts and age-related macular degeneration, a leading cause of vision of loss in one-third of all Americans older than 75. Just 1.3 egg yolks a day appear to increase blood levels of lutein and zeaxanthin by up to 128 percent. Perhaps as a result, data released by the National Eye Institute’s 6,000-person Beaver Dam ( Wisconsin) Eye Study in 2003 indicated that egg consumption was inversely associated with cataract risk in study participants who were younger than 65 years of age when the study started. The relative risk of cataracts was 0.4 for people in the highest category of egg consumption, compared to a risk of 1.0 for those in the lowest category. External cosmetic effects. Beaten egg whites can be used as a facial mask to make your skin look smoother temporarily. The mask works because the egg proteins constrict as they dry on your face, pulling at the dried layer of cells on top of your skin. When you wash off the egg white, you also wash off some of these loose cells. Used in a rinse or shampoo, the pro- tein in a beaten raw egg can make your hair look smoother and shinier temporarily by filling in chinks and notches on the hair shaft.

Adverse Effects Associated with This Food Increased risk of cardiovascular disease. Although egg yolks are high in cholesterol, data from several recent studies suggest that eating eggs may not increase the risk of heart disease. In 2003, a report from a 14-year, 177,000-plus person study at the Harvard School of Public Health showed that people who eat one egg a day have exactly the same risk of heart disease as those who eat one egg or fewer per week. A similar report from the Multiple R isk Factor Intervention Trial showed an inverse relationship between egg consumption and cholesterol levels—that is, people who ate more eggs had lower cholesterol levels. Nonetheless, in 2006 the National Heart, Lung, and Blood Institute still recommends no more than four egg yolks a week (including the yolk in baked goods) for a heart-healthy diet. The American Heart Association says consumers can have one whole egg a day if they limit cholesterol from other sources to the amount suggested by the National Cholesterol Education Project following the Step I and Step II diets. (Both groups permit an unlimited number of egg whites.) The Step I diet provides no more than 30 percent of total daily calories from fat, no more than 10 percent of total daily calories from saturated fat, and no more than 300 mg of cholesterol per day. It is designed for healthy people whose cholesterol is in the range of 200 –239 mg/dL. The Step II diet provides 25– 35 percent of total calories from fat, less than 7 percent of total calories from saturated fat, up to 10 percent of total calories from polyunsaturated fat, up to 20 percent of total calories from monounsaturated fat, and less than 300 mg cho- lesterol per day. This stricter regimen is designed for people who have one or more of the following conditions: •  Existing cardiovascular disease •  High levels of low-density lipoproteins (LDLs, or “bad” cholesterol) or low levels of high-density lipoproteins (HDLs, or “good” cholesterol) •  Obesity •  Type 1 diabetes (insulin-dependent diabetes, or diabetes mellitus) •  Metabolic syndrome, a.k.a. insulin resistance syndrome, a cluster of risk fac- tors that includes type 2 diabetes (non-insulin-dependent diabetes) Food poisoning. Raw eggs (see above) and egg-rich foods such as custards and cream pies are excellent media for microorganisms, including the ones that cause food poisoning. To protect yourself against egg-related poisoning, always cook eggs thoroughly: poach them five minutes over boiling water or boil at least seven minutes or fry two to three minutes on each side (no runny center) or scramble until firm. Bread with egg coating, such as French toast, should be cooked crisp. Custards should be firm and, once cooked, served very hot or refrigerated and served very cold. Allergic reaction. According to the Merck Manual, eggs are one of the 12 foods most likely to trigger the classic food allergy symptoms: hives, swelling of the lips and eyes, and upset stomach. The others are berries (blackberries, blueberries, raspberries, strawberries), choco- late, corn, fish, legumes (green peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see wheat cer ea ls).

Food/Drug Interactions Sensitivity to vaccines. Live-virus measles vaccine, live-virus mumps vaccine, and the vac- cines for influenza are grown in either chick embryo or egg culture. They may all contain minute residual amounts of egg proteins that may provoke a hypersensitivity reaction in people with a history of anaphylactic reactions to eggs (hives, swelling of the mouth and throat, difficulty breathing, a drop in blood pressure, or shock).... eggs

Fish

See also Shellfish, Squid.

Nutritional Profile Energy value (calories per serving): Moderate Protein: High Fat: Low to moderate Saturated fat: Low to moderate Cholesterol: Moderate Carbohydrates: Low Fiber: None Sodium: Low (fresh fish) High (some canned or salted fish) Major vitamin contribution: Vitamin A, vitamin D Major mineral contribution: Iodine, selenium, phosphorus, potassium, iron, calcium

About the Nutrients in This Food Like meat, poultry, milk, and eggs, fish are an excellent source of high- quality proteins with sufficient amount of all the essential amino acids. While some fish have as much or more fat per serving than some meats, the fat content of fish is always lower in saturated fat and higher in unsaturated fats. For example, 100 g/3.5 ounce cooked pink salmon (a fatty fish) has 4.4 g total fat, but only 0.7 g saturated fat, 1.2 g monounsaturated fat, and 1.7 g polyunsaturated fat; 100 g/3.5 ounce lean top sirloin has four grams fat but twice as much saturated fat (1.5 g), plus 1.6 g monounsatu- rated fat and only 0.2 g polyunsaturated fat. Omega-3 Fatty Acid Content of Various Fish (Continued) Fish  Grams/ounce Rainbow trout  0.30 Lake whitefish  0.25 Source: “Food for t he Heart,” American Health, April 1985. Fish oils are one of the few natural food sources of vitamin D. Salmon also has vita- min A derived from carotenoid pigments in the plants eaten by the fish. The soft bones in some canned salmon and sardines are an excellent source of calcium. CAUTION: do not eat the bones in r aw or cook ed fish. the only bones consider ed edible ar e those in the canned products.

The Most Nutritious Way to Serve This Food Cooked, to kill parasites and potentially pathological microorganisms living in raw fish. Broiled, to liquify fat and eliminate the fat-soluble environmental contaminants found in some freshwater fish. With the soft, mashed, calcium-rich bones (in canned salmon and canned sardines).

Diets That May Restrict or Exclude This Food Low-purine (antigout) diet Low-sodium diet (canned, salted, or smoked fish)

Buying This Food Look for: Fresh-smelling whole fish with shiny skin; reddish pink, moist gills; and clear, bulging eyes. The flesh should spring back when you press it lightly. Choose fish fillets that look moist, not dry. Choose tightly sealed, solidly frozen packages of frozen fish. In 1998, the FDA /National Center for Toxicological Research released for testing an inexpensive indicator called “Fresh Tag.” The indicator, to be packed with seafood, changes color if the product spoils. Avoid: Fresh whole fish whose eyes have sunk into the head (a clear sign of aging); fillets that look dry; and packages of frozen fish that are stained (whatever leaked on the package may have seeped through onto the fish) or are coated with ice crystals (the package may have defrosted and been refrozen).

Storing This Food Remove fish from plastic wrap as soon as you get it home. Plastic keeps out air, encouraging the growth of bacteria that make the fish smell bad. If the fish smells bad when you open the package, throw it out. Refrigerate all fresh and smoked fish immediately. Fish spoils quickly because it has a high proportion of polyunsaturated fatty acids (which pick up oxygen much more easily than saturated or monounsaturated fatty acids). Refrigeration also slows the action of microorgan- isms on the surface of the fish that convert proteins and other substances to mucopolysac- charides, leaving a slimy film on the fish. Keep fish frozen until you are ready to use it. Store canned fish in a cool cabinet or in a refrigerator (but not the freezer). The cooler the temperature, the longer the shelf life.

Preparing This Food Fresh fish. Rub the fish with lemon juice, then rinse it under cold running water. The lemon juice (an acid) will convert the nitrogen compounds that make fish smell “fishy” to compounds that break apart easily and can be rinsed off the fish with cool running water. R insing your hands in lemon juice and water will get rid of the fishy smell after you have been preparing fresh fish. Frozen fish. Defrost plain frozen fish in the refrigerator or under cold running water. Pre- pared frozen fish dishes should not be thawed before you cook them since defrosting will make the sauce or coating soggy. Salted dried fish. Salted dried fish should be soaked to remove the salt. How long you have to soak the fish depends on how much salt was added in processing. A reasonable average for salt cod, mackerel, haddock (finnan haddie), or herring is three to six hours, with two or three changes of water. When you are done, clean all utensils thoroughly with hot soap and hot water. Wash your cutting board, wood or plastic, with hot water, soap, and a bleach-and-water solution. For ultimate safety in preventing the transfer of microorganisms from the raw fish to other foods, keep one cutting board exclusively for raw fish, meats, and poultry, and a second one for everything else. Finally, don’t forget to wash your hands.

What Happens When You Cook This Food Heat changes the structure of proteins. It denatures the protein molecules so that they break apart into smaller fragments or change shape or clump together. These changes force moisture out of the tissues so that the fish turns opaque. The longer you cook fish, the more moisture it will lose. Cooked fish flakes because the connective tissue in fish “melts” at a relatively low temperature. Heating fish thoroughly destroys parasites and microorganisms that live in raw fish, making the fish safer to eat.

How Other Kinds of Processing Affect This Food Marinating. Like heat, acids coagulate the proteins in fish, squeezing out moisture. Fish marinated in citrus juices and other acids such as vinegar or wine has a firm texture and looks cooked, but the acid bath may not inactivate parasites in the fish. Canning. Fish is naturally low in sodium, but can ned fish often contains enough added salt to make it a high-sodium food. A 3.5-ounce ser ving of baked, fresh red salmon, for example, has 55 mg sodium, while an equal ser ving of regular can ned salmon has 443 mg. If the fish is can ned in oil it is also much higher in calories than fresh fish. Freezing. When fish is frozen, ice cr ystals form in the flesh and tear its cells so that mois- ture leaks out when the fish is defrosted. Commercial flash-freezing offers some protec- tion by freezing the fish so fast that the ice cr ystals stay small and do less damage, but all defrosted fish tastes drier and less palatable than fresh fish. Freezing slows but does not stop the oxidation of fats that causes fish to deteriorate. Curing. Fish can be cured (preser ved) by smoking, dr ying, salting, or pickling, all of which coagulate the muscle tissue and prevent microorganisms from growing. Each method has its own particular drawbacks. Smoking adds potentially carcinogenic chemicals. Dr ying reduces the water content, concentrates the solids and nutrients, increases the calories per ounce, and raises the amount of sodium.

Medical Uses and/or Benefits Protection against cardiovascular disease. The most important fats in fish are the poly- unsaturated acids k nown as omega-3s. These fatt y acids appear to work their way into heart cells where they seem to help stabilize the heart muscle and prevent potentially fatal arrhythmia (irregular heartbeat). A mong 85,000 women in the long-run n ing Nurses’ Health Study, those who ate fatt y fish at least five times a week were nearly 50 percent less likely to die from heart disease than those who ate fish less frequently. Similar results appeared in men in the equally long-run n ing Physicians’ Health Study. Some studies suggest that people may get similar benefits from omega-3 capsules. Researchers at the Consorzio Mario Negri Sud in Santa Maria Imbaro ( Italy) say that men given a one-gram fish oil capsule once a day have a risk of sudden death 42 percent lower than men given placebos ( “look-alike” pills with no fish oil). However, most nutrition scientists recom- mend food over supplements. Omega-3 Content of Various Food Fish Fish* (3 oz.)  Omega-3 (grams) Salmon, Atlantic  1.8 Anchovy, canned* 1.7 Mackerel, Pacific 1.6 Salmon, pink, canned* 1.4 Sardine, Pacific, canned* 1.4 Trout, rainbow  1.0 Tuna, white, canned* 0.7 Mussels  0.7 * cooked, wit hout sauce * drained Source: Nat ional Fisheries Inst itute; USDA Nut rient Data Laborator y. Nat ional Nut ri- ent Database for Standard Reference. Available online. UR L : http://w w w.nal.usda. gov/fnic/foodcomp/search /.

Adverse Effects Associated with This Food Allergic reaction. According to the Merck Manual, fish is one of the 12 foods most likely to trigger classic food allergy symptoms: hives, swelling of the lips and eyes, and upset stom- ach. The others are berries (blackberries, blueberries, raspberries, strawberries), chocolate, corn, eggs, legumes (green peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see wheat cer ea ls). NOTE : Canned tuna products may contain sulfites in vegetable proteins used to enhance the tuna’s flavor. People sensitive to sulfites may suf- fer serious allergic reactions, including potentially fatal anaphylactic shock, if they eat tuna containing sulfites. In 1997, tuna manufacturers agreed to put warning labels on products with sulfites. Environmental contaminants. Some fish are contaminated with methylmercury, a compound produced by bacteria that chemically alters naturally occurring mercury (a metal found in rock and soil) or mercury released into water through industrial pollution. The methylmer- cury is absorbed by small fish, which are eaten by larger fish, which are then eaten by human beings. The larger the fish and the longer it lives the more methylmercury it absorbs. The measurement used to describe the amount of methylmercury in fish is ppm (parts per mil- lion). Newly-popular tilapia, a small fish, has an average 0.01 ppm, while shark, a big fish, may have up to 4.54 ppm, 450 times as much. That is a relatively small amount of methylmercur y; it will soon make its way harmlessly out of the body. But even small amounts may be hazardous during pregnancy because methylmercur y targets the developing fetal ner vous system. Repeated studies have shown that women who eat lots of high-mercur y fish while pregnant are more likely to deliver babies with developmental problems. As a result, the FDA and the Environ men- tal Protection Agency have now warned that women who may become pregnant, who are pregnant, or who are nursing should avoid shark, swordfish, king mackerel, and tilefish, the fish most likely to contain large amounts of methylmercur y. The same prohibition applies to ver y young children; although there are no studies of newborns and babies, the young brain continues to develop after birth and the logic is that the prohibition during pregnancy should extend into early life. That does not mean no fish at all should be eaten during pregnancy. In fact, a 2003 report in the Journal of Epidemiology and Community Health of data from an 11,585-woman study at the University of Bristol (England) shows that women who don’t eat any fish while pregnant are nearly 40 percent more likely to deliver low birth-weight infants than are women who eat about an ounce of fish a day, the equivalent of 1/3 of a small can of tuna. One theory is that omega-3 fatty acids in the fish may increase the flow of nutrient-rich blood through the placenta to the fetus. University of Southern California researchers say that omega-3s may also protect some children from asthma. Their study found that children born to asthmatic mothers who ate oily fish such as salmon at least once a month while pregnant were less likely to develop asthma before age five than children whose asthmatic pregnant mothers never ate oily fish. The following table lists the estimated levels of mercury in common food fish. For the complete list of mercury levels in fish, click onto www.cfsan.fda.gov/~frf/sea-mehg.html. Mercury Levels in Common Food Fish Low levels (0.01– 0.12 ppm* average) Anchovies, butterfish, catfish, clams, cod, crab (blue, king, snow), crawfish, croaker (Atlantic), flounder, haddock, hake, herring, lobster (spiny/Atlantic) mackerel, mul- let, ocean perch, oysters, pollock, salmon (canned/fresh frozen), sardines, scallops, shad (American), shrimp, sole, squid, tilapia, trout (freshwater), tuna (canned, light), whitefish, whiting Mid levels (0.14 – 0.54 ppm* average) Bass (salt water), bluefish, carp, croaker ( Pacific), freshwater perch, grouper, halibut, lobster (Northern A merican), mackerel (Spanish), marlin, monkfish, orange roughy, skate, snapper, tilefish (Atlantic), tuna (can ned albacore, fresh/frozen), weakfish/ sea trout High levels (0.73 –1.45 ppm* average) King mackerel, shark, swordfish, tilefish * ppm = parts per million, i.e. parts of mercur y to 1,000,000 parts fish Source: U.S. Food and Drug Administ rat ion, Center for Food Safet y and Applied Nut rit ion, “Mercur y Levels in Commercial Fish and Shellfish.” Available online. UR L : w w w.cfsan.fda. gov/~frf/sea-mehg.ht ml. Parasitical, viral, and bacterial infections. Like raw meat, raw fish may carry various pathogens, including fish tapeworm and flukes in freshwater fish and Salmonella or other microorganisms left on the fish by infected foodhandlers. Cooking the fish destroys these organisms. Scombroid poisoning. Bacterial decomposition that occurs after fish is caught produces a his- taminelike toxin in the flesh of mackerel, tuna, bonito, and albacore. This toxin may trigger a number of symptoms, including a flushed face immediately after you eat it. The other signs of scombroid poisoning—nausea, vomiting, stomach pain, and hives—show up a few minutes later. The symptoms usually last 24 hours or less.

Food/Drug Interactions Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyramine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. If you eat a food such as pickled herring, which is high in tyramine, while you are taking an M AO inhibitor, your body may not be able to eliminate the tyramine and the result may be a hypertensive crisis.... fish

Coconut

See also Nuts.

Nutritional Profile Energy value (calories per serving): High Protein: Low Fat: High Saturated fat: High Cholesterol: None Carbohydrates: Low Fiber: High Sodium: Low Major vitamin contribution: B vitamins, vitamin C Major mineral contribution: Iron, potassium, phosphorus

About the Nutrients in This Food Coconut is high in fiber, but its most plentiful nutrient is fat, the oil that accounts for 85 percent of the calories in coconut meat. Coconut oil, which is 89 percent saturated fatty acids, is the most highly saturated dietary fat (see but ter, v egeta ble oils). One piece of fresh coconut, 2” × 2”× 1/2”, has four grams dietar y fiber and 15 g fat (13 g saturated fat, 0.6 g monounsaturated fat, 0.2 g polyunsaturated fat). Like other nuts and seeds, coconut is a good source of some minerals, including 1.1 mg iron (6 percent of the R DA for a woman, 14 percent of the R DA for a man), 0. 5 mg zinc (6 percent of the R DA for a woman, 5 percent of the R DA for a man), and 4. 5 mg selen ium ( 8 percent of the R DA).

The Most Nutritious Way to Serve This Food In small servings, as a condiment.

Diets That May Restrict or Exclude This Food Low-fat diet Low-fiber, low-residue diet

Buying This Food Look for: Coconuts that are heavy for their size. You should be able to hear the liquid sloshing around inside when you shake a coconut; if you don’t, the coconut has dried out. Avoid nuts with a wet “eye” (the dark spots at the top of the nut) or with mold anywhere on the shell.

Storing This Food Store whole fresh coconuts in the refrigerator and use them within a week. Shredded fresh coconut should be refrigerated in a covered container and used in a day or so while it is still fresh and moist. Refrigerate dried, shredded coconut in an air- and moistureproof container once you have opened the can or bag.

Preparing This Food Puncture one of the “eyes” of the coconut with a sharp, pointed tool. Pour out the liquid. Then crack the coconut by hitting it with a hammer in the middle, where the shell is widest. Continue around the nut until you have cracked the shell in a circle around the middle and can separate the two halves. Pry the meat out of the shell. To shred coconut meat, break the shell into small pieces, peel off the hard shell and the brown papery inner covering, then rub the meat against a regular food grater.

What Happens When You Cook This Food Toasting caramelizes sugars on the surface of the coconut meat and turns it golden. Toasting also reduces the moisture content of the coconut meat, concentrating the nutrients.

How Other Kinds of Processing Affect This Food Drying. Drying concentrates all the nutrients in coconut. Unsweetened dried shredded coconut has about twice as much protein, fat, carbohydrate, iron, and potassium as an equal amount of fresh coconut. (Sweetened dried shredded coconut has six times as much sugar.) Coconut milk and cream. Coconut cream is the liquid wrung out of fresh coconut meat; coco- nut milk is the liquid wrung from fresh coconut meat that has been soaked in water; coconut water is the liquid in the center of the whole coconut. Coconut milk and cream are high in fat, coconut water is not. All coconut liquids should be refrigerated if not used immediately.

Adverse Effects Associated with This Food Increased risk of cardiovascular disease. Foods high in saturated fats increase the risk of heart attack from clogged arteries. Allergic reaction. According to the Merck Manual, nuts are one of the 12 foods most likely to trigger the classic food allergy symptoms: hives, swelling of the lips and eyes, and upset stomach. The others are berries (blackberries, blueberries, raspberries, strawberries), choco- late, corn, eggs fish, legumes (green peas, lima beans, peanuts, soybeans), milk, peaches, pork, shellfish, and wheat (see wheat cer ea ls).... coconut

Purines

These are waste products or metabolites of nucleoproteins. They are not recyclable and are broken down further to the primary excretable form, uric acid. High purine presence in a tissue signifies a recent high turnover in nucleoproteins from injury or cell death, which is why some purines, such as allantoin, will stimulate cell regeneration. Many plants contain allantoin, most noticeably Comfrey. Some foods are heavy purine producers and can elevate serum uric acid levels. These include organ meats, seafood, legumes, and such politically correct foods as spirulina, chlorella, and bee pollen. Caffeine and theobromine are purine-based alkaloids and can mildly increase uric acid, but they pale beside algae, pollen, and glandular extracts from the chiropractor.... purines

Corn

(Hominy) See also Flour, Vegetable oils, Wheat cereals.

Nutritional Profile Energy value (calories per serving): Moderate Protein: Moderate Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: High Sodium: Low Major vitamin contribution: Vitamin A (in yellow corn), B vitamins, vitamin C Major mineral contribution: Potassium

About the Nutrients in This Food Like other grains, corn is a high-carbohydrate, high-fiber food. Eighty-one percent of the solid material in the corn kernel consists of sugars, starch, and dietary fiber, including insoluble cellulose and noncarbohydrate lignin in the seed covering and soluble pectins and gums in the kernel.* Corn has small amounts of vitamin A, the B vitamin folate, and vitamin C. Corn is a moderately good source of plant proteins, but zein (its major protein) is deficient in the essential amino acids lysine, cystine, and tryptophan. Corn is low in fat and its oils are composed primarily of unsaturated fatty acids. Yellow corn, which gets its color from the xanthophyll pigments lutein and zeaxanthin plus the vitamin A-active pigments carotene and cryptoxanthin, contains a little vitamin A; white corn has very little. One fresh ear of yellow corn, 5.5– 6.5 inches long, has three grams dietar y fiber, one gram fat (0.1 g saturated fat, 0.3 g monounsaturated fat, 0.4 mg polyunsaturated fat), 137 IU vitamin A (6 percent of the R DA for a woman, 5 percent of the R DA for a man), 34 mcg folate (9 percent of the R DA), and 5 mg vitamin C (7 percent of the R DA for a woman, 6 percent of the R DA for a man). * The most plent iful sugar in sweet corn is glucose; hydrolysis (chemical splitt ing) of corn starch is t he principal indust rial source of glucose. Since glucose is less sweet t han sucrose, sucrose and fructose are added to commercial corn syrup to make it sweeter.

The Most Nutritious Way to Serve This Food With beans (which are rich in lysine) or milk (which is rich in lysine and tryptophan), to complement the proteins in corn. With meat or a food rich in vitamin C, to make the iron in corn more useful.

Diets That May Restrict or Exclude This Food Low-fiber diet

Buying This Food Look for: Cobs that feel cool or are stored in a refrigerated bin. Keeping corn cool helps retain its vitamin C and slows the natural conversion of the corn’s sugars to starch. Choose fresh corn with medium-sized kernels that yield slightly when you press them with your fingertip. Very small kernels are immature; very large ones are older and will taste starchy rather than sweet. Both yellow and white kernels may be equally tasty, but the husk of the corn should always be moist and green. A dry yellowish husk means that the corn is old enough for the chlorophyll pigments in the husk to have faded, letting the carotenes underneath show through.

Storing This Food Refrigerate fresh corn. At room temperature, fresh-picked sweet corn will convert nearly half its sugar to starch within 24 hours and lose half its vitamin C in four days. In the refrigera- tor, it may keep all its vitamin C for up to a week and may retain its sweet taste for as long as ten days.

Preparing This Food Strip off the husks and silk, and brush with a vegetable brush to get rid of clinging silky threads. R inse the corn briefly under running water, and plunge into boiling water for four to six minutes, depending on the size of the corn.

What Happens When You Cook This Food Heat denatures (breaks apart) the long-chain protein molecules in the liquid inside the corn kernel, allowing them to form a network of protein molecules that will squeeze out moisture and turn rubbery if you cook the corn too long. Heat also allows the starch granules inside the kernel to absorb water so that they swell and eventually rupture, releasing the nutrients inside. When you cook corn, the trick is to cook it just long enough to rupture its starch granules while keeping its protein molecules from turning tough and chewy. Cooking fresh corn for several minutes in boiling water may destroy at least half of its vitamin C. At Cornell University, food scientists found that cooking fresh corn in the microwave oven (two ears/without water if very fresh/4 minutes/600 –700 watts) preserves most of the vitamin C.

How Other Kinds of Processing Affect This Food Canning and freezing. Canned corn and frozen corn both have less vitamin C than fresh- cooked corn. The vitamin is lost when the corn is heated during canning or blanched before freezing to destroy the natural enzymes that would otherwise continue to ripen it. Blanch- ing in a microwave oven rather than in boiling water can preserve the vitamin C in frozen corn (see above). Milling. Milling removes the hull and germ from the corn kernel, leaving what is called hominy. Hominy, which is sometimes soaked in wood ash (lye) to increase its calcium con- tent, can be dried and used as a cereal (grits) or ground into corn flour. Coarsely ground corn flour is called cornmeal. Processed corn cereals. All processed, ready-to-eat corn cereals are much higher in sodium and sugar than fresh corn. Added calcium carbonate. Pellagra is a niacin-deficiency disease that occurs most com- monly among people for whom corn is the staple food in a diet lacking protein foods with the essential amino acid tryptophan, which can be converted to niacin in the human body. Pellagra is not an inevitable result of a diet high in corn, however, since the niacin in corn can be made more useful by soaking the corn in a solution of calcium carbonate (lime) and water. In Mexico, for example, the corn used to make tortillas is boiled in a dilute solution of calcium carbonate (from shells or limestone) and water, then washed, drained, and ground. The alkaline bath appears to release the bound niacin in corn so that it can be absorbed by the body.

Medical Uses and/or Benefits As a wheat substitute in baking. People who are allergic to wheat or cannot tolerate the glu- ten in wheat flour or wheat cereals can often use corn flour or hominy instead. Bath powder. Corn starch, a fine powder refined from the endosperm (inner part) of the corn kernel, can be used as an inexpensive, unperfumed body or face powder. Because it absorbs oils, it is also used as an ingredient in dry shampoos.

Adverse Effects Associated with This Food Allergic reaction. According to the Merck Manual, corn is one of the 12 foods most likely to trigger the classic food allergy symptoms: hives, swelling of the lips and eyes, and upset stomach. The others are berries (blackberries, blueberries, raspberries, strawberries), choco- late, eggs, fish, legumes (green peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see wheat cer ea ls).... corn

Fenugreek

Trigonella foenum-graecum

Fabaceae

San: Methika, Methi, Kalanusari;

Hin: Meti, Mutti; Ben, Mar: Methi;

Mal: Uluva;

Tam: Ventayam;

Kan: Mentya, Menlesoppu;

Tel: Mentulu, Mentikura; Arab: Hulabaha

Importance: Fenugreek or Greek Hayes is cultivated as a leafy vegetable, condiment and as medicinal plant. The leaves are refrigerant and aperient and are given internally for vitiated conditions of pitta. A poultice of the leaves is applied for swellings and burns. Seeds are used for fever, vomiting, anorexia, cough, bronchitis and colonitis. In the famous Malayalam treatises like ‘Padhyam’ ‘Kairali’ and ‘Arunodhayam’, uluva is recommended for use as kalanusari in Dhanvantaram formulations of ‘Astaghradayam’. An infusion of the seeds is a good cool drink for small pox patients. Powdered seeds find application in veterinary medicine. An aqueous extract of the seeds possesses antibacterial property (Kumar et al, 1997; Warrier et al, 1995).

Distribution: Fenugreek is a native of South Eastern Europe and West Asia. In India fenugreek is grown in about 0.30 lakh ha producing annually about 30,000 tonnes of seeds. The major states growing fenugreek are Rajasthan, Madhya Pradesh, Gujarat, Uttar Pradesh, Maharashtra, Punjab and Karnataka. It is grown wild in Kashmir and Punjab.

Botany: Trigonella foenum-graecum Linn. belongs to family, Fabaceae. It is an annual herb, 30-60cm in height, leaves are light green, pinnately trifoliate, leaflets toothed, flowers are white or yellowish white, papilionaceous and axillary. Fruits are legumes, 5-7.5cm long, narrow, curved, tapering with a slender point and containing 10-20 deeply furrowed seeds per pod. There are two species of the genus Trigonella which are of economic importance viz. T. foenum graecum, the common methi and T. corniculata, the Kasuri methi. These two differ in their growth habit and yield. The latter one is a slow growing type and remains in rosette condition during most of the vegetative growth period (Kumar et al, 1997; Warrier et al, 1995).

Agrotechnology: Fenugreek has a wide adaptability and is successfully cultivated both in the tropics as well as temperate regions. It is tolerant to frost and freezing weather. It does well in places receiving moderate or low rainfall areas but not in heavy rainfall area. It can be grown on a wide variety of soils but clayey loam is relatively better. The optimum soil pH should be 6-7 for its better growth and development. Some of the improved cultivars available for cultivation are CO1 (TNAU), Rajendra Kanti (RAU), RMt-1(RAU) and Lam Selection-1 (APAU). Land is prepared by ploughing thrice and beds of uniform size are prepared. Broadcasting the seed on the bed and raking the surface to cover the seeds is normally followed. But to facilitate intercultural operations, line sowing is also advocated in rows at 20-25cm apart. Sowing in the plains is generally in September-November while in the hills it is from March. The seed rate is 20-25kg/ha and the seeds germinate within 6-8 days. Besides 15t of FYM, a fertiliser dose of 25:25:50kg NPK/ha is recommended. Entire P,K and half N are to be applied basally and the remaining half N 30 days after sowing. First irrigation is to be given immediately after sowing and subsequent irrigations at 7-10 days interval. Hoeing and weeding are to be done during the early stages of plant growth and thinning at 25-30 days to have a spacing of 10-15cm between plants and to retain 1-2 plants per hill. Root rot (caused by Rhizoctonia solani) is a serious disease and can be controlled by drenching carbendazim 0.05% first at the onset of the disease and another after one monthof first application. In about 25-30 days, young shoots are nipped off 5cm above ground level and subsequent cuttings of leaves may be taken after 15 days. It is advisable to take 1-2 cuttings before the crop is allowed for flowering and fruiting when pods are dried, the plants are pulled out, dried in the sun and seeds are threshed by beating with stick or by rubbing with hands. Seeds are winnowed, cleaned and dried in the sun. They may be stored in gunny bags lined with paper. An yield of 1200-1500kg of seeds and about 800-1000kg of leaves may be obtained per hectare in crops grown for both the purposes (Kumar et al, 1997).

Properties and activity: Seeds contain sapogenins-diosgenin, its 25-epimer(yamogenin), tigogenin, gitogenin, yuccagenin, 25-2-spirosta-3-5-diene and its -epimer. Seeds also contain a C27-steroidal sapogenin-peptide ester-fenugreekine. Seeds, in addition, contain 4-hydroxyleucine and saponins-fenugrins A-E:two furostanol glycoxides-trigonelloxide C and (255)-22-O-methyl-52-firostan-3 ,22,26,triol-3-O- -rhamnopyrans syl(1-2) C- -D-glucopyranosyl (1-3)- -D- glucopyranoxide-26-O- -D-glucopyranoxide.

Other chemical constituents are sterols- -sitosterol and cholesterol, flavone C- glycosides-vitexin, iso-vitexin, vitexin-2”-O-P-coumarate and vicenin-2. Flavonoids- quercetin and luteolin, flavonoid glycoside-vicenin-I. Invitro seedling callus culture gave flavonoids-luteolin and vitexin-1-glycoside. An essential oil is also reported from seeds. Leaves gave saponins-gracecunins A-G, flavonoids- kaempferol and quercetin; sterols- - sitosterol, sapogenins-diosgenin, gitogenin coumarin-scopoletin is also reported from the plant.

Seeds are bitter, mucilaginous, aromatic, carminative, tonic, diuretic, thermogenic, galactagogue, astringent, emollient, amophrodisiac, antirheumatic, CNS depressant and antiimplantation. Fenugreekine is hypoglycaemic, diuretic, hypotensive, cardiotonic, antiphlogistic. It showed 80% inhibition of vaccina virus.... fenugreek

Rheumatoid

Broadly, having dull aching in joints, muscles, eyes, and so forth. In a more literal sense, it is having an autoimmune response, usually between certain IgM and IgE antibodies, that may have started as a bacterial infection or as some autoimmune reaction. The severity is increased under emotional, physical, dietary, and allergic stress­or any stress. Hans Selye showed a few years ago that once a chronic disease response occurs, any stress above metabolic tolerance will aggravate the chronic disease, which is why some people, stressed by cold, wet weather, must avoid it; but someone else is stressed by legumes, still another person gets upset (and stressed) by watching too much CNN. You know best what stresses you; it’s not fair to ask a doc to find it out for you. Rheumatoid arthritis is so named because it somewhat resembles the joint inflammations that can occur in rheumatic fever, a completely different disease caused by a strep infection.... rheumatoid

Rooibos Tea Health Benefits

Rooibos tea is a largely consumed beverage, due to its medicinal properties dealing with weak bone structure, insomnia or even stomach ailments. Rooibos Tea description Rooibos is a plant belonging to the legume family which grows in South Africa. This plant is used to prepare Rooibos tea (also known as bush tea or redbush tea). The beverage is known for centuries in Southern Africa and nowadays, it is consumed in many countries. Fermentation by analogy (the process through which the leaves are oxidized) renders its reddish-brown color and enhances its flavor. Rooibos Tea brewing To prepare Rooibos tea:
  • use spring water or filtered water
  • brew Rooibos tea leaves in heartily boiling water: one heaping teaspoon of tea leaves per eight ounces (one cup) of water
  • steep it five to ten minutes
  • keep the water hot the entire time the leaves are steeping
Milk, sugar or honey can be added to the resulting beverage. Rooibos Tea benefits Rooibos tea has been successfully used to:
  • treat irritability,headaches, disturbed sleeping patterns, insomnia, nervous tension, mild depression or hypertension
  • relieve stomach cramps
  • relieve colic in infants
  • relieve stomach and indigestive problems like nausea, vomiting, heartburn, stomach ulcers and constipation
  • supplement the daily amounts of calcium, manganese and especially fluoride for the development of strong teeth and bones
  • relieve itching and certain skin irritations like eczema, nappy rash and acne (when directly applied to the affected area)
Rooibos Tea side effects Rooibos tea is not recommended to pregnant and nursing women. Also, it is recommended to ask your doctor before consuming this type of tea. Rooibos tea is a healthy beverage used to treat a large array of diseases such as skin-related issues, indigestion, disturbed sleeping patterns, but not only.... rooibos tea health benefits

Senna Tea

Senna tea is made out of senna, which is an herb that contains compounds called anthraquinones, resulting in intestinal contractions. It is a purgative, similar to aloe and rhubarb and is mainly used in alleviating constipation. It can be found in Middle Eastern, African and Asian countries. Description of Senna Tea Sennas plants are mainly shrubs, its yellow flowers don’t produce nectar and its fruit is a legume. You can find sennas also as herbs or even small trees, used for ornamental purposes. Benefits of Senna Tea Little is known about the potential benefits of senna tea, but being a purgative herb it is used today as a laxative by making muscles to contract, thus stimulating bowel movements, helping in the reduction of constipation. It is sometimes used before undertaking colonoscopy-a procedure used in screening colon cancer. Besides senna tea is being used as a way of losing weight, although there are some potential risks involving the intake of senna, as we are about to find out. Side effects and risks of Senna Tea Senna tea has to be used no more than 2 weeks, because of its high risk of dysfunction of bowel, according to the national institute of Health (NIH). Other risks imply: muscle weakness, liver damage, or heart function disorders. A side effect of taking senna medication is abdominal cramps and even Malanosis coli, a brown discoloration of the colon wall. The consumption of senna tea over an extensive period of time can produce toxicity to the liver according to a 2005 report of the Annals of Pharmacotherapy. Because there is no significant medical research taken into sennas beneficial effects on the body it cannot be used in health purposes yet. Preparation of Senna Tea You can boil 100 grams of the tea leaves in distilled water with 5 grams of fresh sliced ginger. Cover it for almost 15 minutes, strain, and drink hot or cold. Careful though if you leave it long enough to steep it will become stronger and therefore it could lead to abdominal cramping. Senna tea is a strong, dangerous medicine used in modern times mostly in colon issues. You shouldn’t try to use Senna tea as a cure for more than a week and do it preferably at the doctor’s advice.... senna tea

Steroids, Plant

The previous subject is obviously an endless one, but as this is the glossary of an herbal nature, let me assure you, virtually no plants have a direct steroid hormone-mimicking effect. There are a few notable exceptions with limited application, like Cimicifuga and Licorice. Plant steroids are usually called phytosterols, and, when they have any hormonal effect at all, it is usually to interfere with human hormone functions. Beta sitosterol, found in lots of food, interferes with the ability to absorb cholesterol from the diet. Corn oil and legumes are two well-endowed sources that can help lower cholesterol absorption. This is of only limited value, however, since cholesterol is readily manufactured in the body, and elevated cholesterol in the blood is often the result of internal hormone and neurologic stimulus, not the diet. Cannabis can act to interfere with androgenic hormones, and Taraxacum phytosterols can both block the synthesis of some new cholesterol by the liver and increase the excretion of cholesterol as bile acids; but other than that, plants offer little direct hormonal implication. The first method discovered for synthesizing pharmaceutical hormones used a saponin, diosgenin, and a five-step chemical degradation, to get to progesterone, and another, using stigmasterol and bacterial culturing, to get to cortisol. These were chemical procedures that have nothing to do with human synthesis of such hormones, and the plants used for the starting materials-Mexican Wild Yam, Agave, and Soy were nothing more than commercially feasible sources of compounds widely distributed in the plant kingdom. A clever biochemist could obtain testosterone from potato sterols, but no one would be likely to make the leap of faith that eating potatoes makes you manly (or less womanly), and there is no reason to presume that Wild Yam (Dioscorea) has any progesterone effects in humans. First, the method of synthesis from diosgenin to progesterone has nothing to do with human synthesis of the corpus luteum hormone; second, oral progesterone has virtually no effect since it is rapidly digested; and third, orally active synthetic progesterones such as norethindrone are test-tube born, and never saw a Wild Yam. The only “precursor” the ovaries, testes and adrenal cortices EVER need (and the ONLY one that they can use if synthesizing from scratch) is something almost NONE of us ever run out of...Low Density Cholesterol. Unless you are grimly fasting, anorectic, alcoholic, seriously ill or training for a triathlon, you only need blood to make steroid hormones from. If hormones are off, it isn’t from any lack of building materials...and any product claiming to supply “precursors” better contain lard or butter (they don’t)...or they are profoundly mistaken, or worse. The recent gaggle of “Wild Yam” creams actually do contain some Wild Yam. (Dioscorea villosa, NOT even the old plant source of diosgenin, D. mexicana...if you are going to make these mistakes, at least get the PLANT right) This is a useful and once widely used antispasmodic herb...I have had great success using it for my three separate bouts with kidney stones...until I learned to drink more water and alkalizing teas and NEVER stay in a hot tub for three hours. What these various Wild Yam creams DO contain, is Natural Progesterone. Although this is inactive orally (oral progesterone is really a synthetic relative of testosterone), it IS active when injected...or, to a lesser degree, when applied topically. This is pharmaceutical progesterone, synthesized from stigmasterol, an inexpensive (soy-bean oil) starting substance, and, although it is identical to ovarian progesterone, it is a completely manufactured pharmaceutical. Taking advantage of an FDA loophole (to them this is only a cosmetic use...they have the misguided belief that it is not bioactive topically), coupled with some rather convincing (if irregular) studies showing the anti-osteoporotic value of topical progesterone for SOME women, a dozen or so manufacturers are marketing synthetic Natural Progesterone for topical use, yet inferring that Wild Yam is what’s doing good. I am not taking issue with the use of topical progesterone. It takes advantage of the natural slow release into the bloodstream of ANY steroid hormones that have been absorbed into subcutaneous adipose tissue. It enters the blood from general circulation the same way normal extra-ovarian estradiol is released, and this is philosophically (and physiologically) preferable to oral steroids, cagily constructed to blast on through the liver before it can break them down. This causes the liver to react FIRST to the hormones, instead of, if the source is general circulation, LAST. My objection is both moral and herbal: the user may believe hormonal effects are “natural”, the Wild Yam somehow supplying “precursors” her body can use if needed, rejected if not. This implies self-empowerment, the honoring of a woman’s metabolic choice...something often lacking in medicine. This is a cheat. The creams supply a steady source of pharmaceutical hormone (no precursor here) , but they are being SOLD as if the benefits alone come from the Wild Yam extract, seemingly formulated with the intent of having Wild Yam the most abundant substance so it can be listed first in the list of constituents. I have even seen the pharmaceutical Natural Progesterone labeled as “Wild Yam Progesterone” or “Wild Yam Estrogen precursor” or, with utter fraud, “Wild Yam Hormone”. To my knowledge, the use of Mexican Yam for its saponins ceased to be important by the early 1960’s, with other processes for synthesizing steroids proving to be cheaper and more reliable. I have been unable to find ANY manufacturer of progesterone that has used the old Marker Degradation Method and/or diosgenin (from whatever Dioscorea) within the last twenty years. Just think of it as a low-tech, non invasive and non-prescription source of progesterone, applied topically and having a slow release of moderate amounts of the hormone. Read some of the reputable monographs on its use, make your choice based solely on the presence of the synthetic hormone, and use it or don’t. It has helped some women indefinitely, for others it helped various symptoms for a month or two and then stopped working, for still other women I have spoken with it caused unpleasant symptoms until they ceased its use. Since marketing a product means selling as much as possible and (understandably) presenting only the product’s positive aspects, it would be better to try and find the parameters of “use” or “don’t use” from articles, monographs, and best of all, other women who have used it. Then ask them again in a month or two and see if their personal evaluation has changed. If you have some bad uterine cramps, however, feel free to try some Wild Yam itself...it often helps. Unless there is organic disease, hormones are off is because the whole body is making the wrong choices in the hormones it does or doesn’t make. It’s a constitutional or metabolic or dietary or life-stress problem, not something akin to a lack of essential amino acids or essential fatty acids that will clear up if only you supply some mythic plant-derived “precursor”. End of tirade.... steroids, plant

Diet - Macrobiotic

A plant-based diet with small amounts of poultry, fish or meat for non- vegetarians. A return to the traditional diet of local natural foods as found in some primitive communities and which is believed to increase immunity against degenerative diseases of the civilised world.

The average macrobiotic diet is made up approximately of the proportions: whole grains 45 per cent; vegetables 25 per cent; beans, legumes and seeds 10 per cent; nuts 5 per cent; fruit 5 per cent; seaweeds 5 per cent; poultry 2.5 per cent; fish 2.5 per cent.

Whole grains: wheat, barley, rye, oats, brown rice, buckwheat, millet, corn. Vegetables: green leaves and roots – grown organically. Beans, legumes and seeds: all beans, aduki, lentils, chickpeas. Seeds: sesame, sunflower, etc. Seaweeds: hiziki, wakama, dulse, Carragheen moss, kelp. Very low sugar. Moderate fats and oils. ... diet - macrobiotic

Iatrogenic Disease

A most likely reaction to occur from a complication arising from therapeutic endeavour. A red angry irritant skin reaction which later scales off. May be due to drugs (antihistamines, aspirin, and chemical medicine). Special offenders are binders, artificial colourings and other ingredients added to medicines for cosmetic or preservation purposes. Urticaria and toxic erythema are common.

BCG innoculation may produce tuberculous ulceration; deep X-ray therapy a characteristic rash; steroids a redness of the face, thinning of the skin and easy bruising.

Sufferers from psoriasis and other chronic skin disorders experience a worsening of the condition with possible pus formation. “The Pill” has been responsible for erythema nodosum (red patches and nodules) as well as vaginal candidiasis. Some drugs cause shingles. Skin looks as if it is scalded. Internally, the mucous membranes may be seriously eroded.

As the liver is responsible for breaking down foreign substances in the body, most prescriptions contain at least one liver remedy. One for the lymphatic system is also advised. Effective antidote to drug intoxication: Nux vomica, which is given by a practitioner.

By their specific action on liver, spleen and glandular system certain plant medicines stimulate those vital organs to eliminate drug poisons. They include alteratives: Yellow Dock, Echinacea, Blue Flag. Carefully combined herbal medicine can offer something constructive before it is too late.

Alternatives. Teas. Alfalfa, Nettles, Figwort, Violet leaves, Betony, Mullein. 1-2 teaspoons to each cup of boiling water; infuse 10-15 minutes; dose, 1 cup thrice daily.

Tablets/capsules. As available: Echinacea, Blue Flag root, Dandelion, Devil’s Claw, Red Clover, Seaweed and Sarsaparilla, Burdock, Queen’s Delight, Garlic.

Formula. Goldenseal quarter; Poke root half; Echinacea 2. Doses. Powders: one-third teaspoon. Liquid extracts 30-60 drops. Tinctures: 1-2 teaspoons. In water or honey thrice daily; 2-hourly for acute cases. Topical. Evening Primrose oil, Aloe Vera gel or fresh juice, Jojoba. Ointments: Chickweed, Comfrey or Marshmallow. Use of lanolin-based ointments is discouraged.

Diet. Accept: whole grains, meat, organ meats, molasses, wheatgerm, dessicated liver, green leafy vegetables, legumes, citrus fruits, broccoli, green peppers, cold-pressed vegetable oils, sweet potato. Reject: red meat, ham, pork, bacon, white sugar, alcohol, nuts.

Supplements. Vitamin A, B-complex, B2, B6, B12, Folic acid, C, D, E (500iu). ... iatrogenic disease

Broom, Spanish

Spartium junceum

FAMILY: Fabaceae (Leguminosae).

SYNONYMS: Genista juncea, genista, weavers broom, broom (absolute), genet (absolute).

GENERAL DESCRIPTION: A decorative plant, often cultivated as an ornamental shrub, up to 3 metres high with upright woody branches and tough flexible stems. It has bright green leaves and large, yellow, pea-like fragrant flowers, also bearing its seeds in pods or legumes.

DISTRIBUTION: Native to southern Europe, especially southern Spain and southern France; mainly cultivated in Spain, France, Italy and USA (as a garden shrub). The absolute is produced in Southern France.

OTHER SPECIES: Closely related to dyer’s greenweed (Genista tinctoria) and the common or green broom (Sarothamnus scoparius or Cytisus scoparius). There are also several other related species of broom, which are rich in their folk tradition.

HERBAL/FOLK TRADITION: The twigs and bark have been used since ancient times to produce a strong fibre which can be made into cord or a coarse cloth. The branches were also used for thatching, basketwork, fencing and, of course, for making brooms. Spanish broom has similar therapeutic properties to the common broom, which is still current in the British Herbal Pharmacopoeia for cardiac dropsy, myocardial weakness, tachycardia and profuse menstruation. However, the Spanish broom is said to be five to six times more active than the common broom, and even that must be used with caution by professional herbalists due to the strength of the active ingredients: ‘A number of cases of poisoning have occurred from the substitution of the dried flowers of Spartium for those of true Broom.’.

ACTIONS: Antihaemorrhagic, cardioactive, diuretic, cathartic, emmenagogue, narcotic, vasoconstrictor.

EXTRACTION: An absolute is obtained by solvent extraction from the dried flowers.

CHARACTERISTICS: A dark brown, viscous liquid with an intensely sweet, floral, hay-like scent with a herbaceous undertone. It blends well with rose, tuberose, cassie, mimosa, violet, vetiver and herbaceous-type fragrances.

PRINCIPAL CONSTITUENTS: The absolute contains capryllic acid, phenols, aliphatics, terpenes, esters, scoparin and sparteine, as well as wax, etc.

SAFETY DATA: Sparteine, which is contained in the flowers as the main active constituent, is toxic. In large doses, it causes vomiting, renal irritation, weakens the heart, depresses the nerve cells and lowers the blood pressure, and in extreme cases causes death.

AROMATHERAPY/HOME: USE None.

OTHER USES: Used in soaps, cosmetics and high-class perfumery; also as a flavour ingredient in sweet rich ‘preserves’, alcoholic and soft drinks.... broom, spanish




Recent Searches