Mycoplasma Health Dictionary

Mycoplasma: From 4 Different Sources


Any of a group of bacteria that are the smallest type capable of free existence. Mycoplasmas are about the same size as viruses but, unlike viruses, they are capable of reproducing outside living cells. One species, MYCOPLASMA PNEUMONIAE, causes primary atypical pneumonia.
Health Source: BMA Medical Dictionary
Author: The British Medical Association
A genus of micro-organisms which di?er from bacteria in that they lack a rigid cell wall. They are responsible for widespread epidemics in cattle and poultry. For a long time the only member of the genus known to cause disease in humans was Mycoplasma pneumoniae which is responsible for the form of PNEUMONIA known as primary atypical pneumonia – particularly common in children, for whom it is the single most common cause of the diseaase when contracted out of hospital. Another, Mycoplasma genitalium, has now been isolated which is responsible for certain cases of non-gonococcal urethritis. Mycoplasma infections respond to TETRACYCLINES.
Health Source: Dictionary of Tropical Medicine
Author: Health Dictionary
A genus of cell wall defective bacteria which includes the cause of primary atypical pneumonia, Mycoplasma pneumoniae.
Health Source: Medical Dictionary
Author: Health Dictionary
n. one of a group of minute nonmotile bacteria that lack a rigid cell wall and hence display a variety of forms. The group includes some species that cause severe respiratory disease in cattle, sheep, and goats; one of these, Mycoplasma pneumoniae, causes *atypical pneumonia in humans.
Health Source: Oxford | Concise Colour Medical Dictionary
Author: Jonathan Law, Elizabeth Martin

Pneumonia

Pneumonia is an in?ammation of the lung tissue (see LUNGS) caused by infection. It can occur without underlying lung or general disease, or in patients with an underlying condition that makes them susceptible.

Pneumonia with no predisposing cause – community-acquired pneumonia – is caused most often by Streptococcus pneumoniae (PNEUMOCOCCUS). The other most common causes are viruses, Mycoplasma pneumoniae and Legionella species (Legionnaire’s disease). Another cause, Chlamydia psittaci, may be associated with exposure to perching birds.

In patients with underlying lung disease, such as CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) or BRONCHIECTASIS as in CYSTIC FIBROSIS, other organisms such as Haemophilus in?uenzae, Klebsiella, Escherichia coli and Pseudomonas aeruginosa are more prominent. In patients in hospital with severe underlying disease, pneumonia, often caused by gram-negative bacteria (see GRAM’S STAIN), is commonly the terminal event.

In patients with an immune system suppressed by pregnancy and labour, infection with HIV, CHEMOTHERAPY or immunosuppressive drugs after organ transplantation, a wider range of opportunistic organisms needs to be considered. Some of these organisms such as CYTOMEGALOVIRUS (CMV) or the fungus Pneumocystis carinii rarely cause disease in immunocompetent individuals – those whose body’s immune (defence) system is e?ective.

TUBERCULOSIS is another cause of pneumonia, although the pattern of lung involvement and the more chronic course usually di?erentiate it from other causes of pneumonia.

Symptoms The common symptoms of pneumonia are cough, fever (sometimes with RIGOR), pleuritic chest pain (see PLEURISY) and shortness of breath. SPUTUM may not be present at ?rst but later may be purulent or reddish (rusty).

Examination of the chest may show the typical signs of consolidation of an area of lung. The solid lung in which the alveoli are ?lled with in?ammatory exudate is dull to percussion but transmits sounds better than air-containing lung, giving rise to the signs of bronchial breathing and increased conduction of voice sounds to the stethoscope or palpating hand.

The chest X-ray in pneumonia shows opacities corresponding to the consolidated lung. This may have a lobar distribution ?tting with limitation to one area of the lung, or have a less con?uent scattered distribution in bronchopneumonia. Blood tests usually show a raised white cell (LEUCOCYTES) count. The organism responsible for the pneumonia can often be identi?ed from culture of the sputum or the blood, or from blood tests for the speci?c ANTIBODIES produced in response to the infection.

Treatment The treatment of pneumonia involves appropriate antibiotics together with oxygen, pain relief and management of any complications that may arise. When treatment is started, the causative organism has often not been identi?ed so that the antibiotic choice is made on the basis of the clinical features, prevalent organisms and their sensitivities. In severe cases of community-acquired pneumonia (see above), this will often be a PENICILLIN or one of the CEPHALOSPORINS to cover Strep. pneumoniae together with a macrolide such as ERYTHROMYCIN. Pleuritic pain will need analgesia to allow deep breathing and coughing; oxygen may be needed as judged by the oxygen saturation or blood gas measurement.

Possible complications of pneumonia are local changes such as lung abscess, pleural e?usion or EMPYEMA and general problems such as cardiovascular collapse and abnormalities of kidney or liver function. Appropriate treatment should result in complete resolution of the lung changes but some FIBROSIS in the lung may remain. Pneumonia can be a severe illness in previously ?t people and it may take some months to return to full ?tness.... pneumonia

Bacteria

(Singular: bacterium.) Simple, single-celled, primitive organisms which are widely distributed throughout the world in air, water, soil, plants and animals including humans. Many are bene?cial to the environment and other living organisms, but some cause harm to their hosts and can be lethal.

Bacteria are classi?ed according to their shape: BACILLUS (rod-like), coccus (spherical – see COCCI), SPIROCHAETE (corkscrew and spiral-shaped), VIBRIO (comma-shaped), and pleomorphic (variable shapes). Some are mobile, possessing slender hairs (?agellae) on the surfaces. As well as having characteristic shapes, the arrangement of the organisms is signi?cant: some occur in chains (streptococci) and some in pairs (see DIPLOCOCCUS), while a few have a ?lamentous grouping. The size of bacteria ranges from around 0.2 to 5 µm and the smallest (MYCOPLASMA) are roughly the same size as the largest viruses (poxviruses – see VIRUS). They are the smallest organisms capable of existing outside their hosts. The longest, rod-shaped bacilli are slightly smaller than the human erythrocyte blood cell (7 µm).

Bacterial cells are surrounded by an outer capsule within which lie the cell wall and plasma membrane; cytoplasm ?lls much of the interior and this contains genetic nucleoid structures containing DNA, mesosomes (invaginations of the cell wall) and ribosomes, containing RNA and proteins. (See illustration.)

Reproduction is usually asexual, each cell dividing into two, these two into four, and so on. In favourable conditions reproduction can be very rapid, with one bacterium multiplying to 250,000 within six hours. This means that bacteria can change their characteristics by evolution relatively quickly, and many bacteria, including Mycobacterium tuberculosis and Staphylococcus aureus, have developed resistance to successive generations of antibiotics produced by man. (METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA)) is a serious hazard in some hospitals.

Bacteria may live as single organisms or congregate in colonies. In arduous conditions some bacteria can convert to an inert, cystic state, remaining in their resting form until the environment becomes more favourable. Bacteria have recently been discovered in an inert state in ice estimated to have been formed 250 million years ago.

Bacteria were ?rst discovered by Antonj van Leewenhoek in the 17th century, but it was not until the middle of the 19th century that Louis Pasteur, the famous French scientist, identi?ed bacteria as the cause of many diseases. Some act as harmful PATHOGENS as soon as they enter a host; others may have a neutral or benign e?ect on the host unless the host’s natural immune defence system is damaged (see IMMUNOLOGY) so that it becomes vulnerable to any previously well-behaved parasites. Various benign bacteria that permanently reside in the human body are called normal ?ora and are found at certain sites, especially the SKIN, OROPHARYNX, COLON and VAGINA. The body’s internal organs are usually sterile, as are the blood and cerebrospinal ?uid.

Bacteria are responsible for many human diseases ranging from the relatively minor – for example, a boil or infected ?nger – to the potentially lethal such as CHOLERA, PLAGUE or TUBERCULOSIS. Infectious bacteria enter the body through broken skin or by its ori?ces: by nose and mouth into the lungs or intestinal tract; by the URETHRA into the URINARY TRACT and KIDNEYS; by the vagina into the UTERUS and FALLOPIAN TUBES. Harmful bacteria then cause disease by producing poisonous endotoxins or exotoxins, and by provoking INFLAMMATION in the tissues – for example, abscess or cellulitis. Many, but not all, bacterial infections are communicable – namely, spread from host to host. For example, tuberculosis is spread by airborne droplets, produced by coughing.

Infections caused by bacteria are commonly treated with antibiotics, which were widely introduced in the 1950s. However, the con?ict between science and harmful bacteria remains unresolved, with the overuse and misuse of antibiotics in medicine, veterinary medicine and the animal food industry contributing to the evolution of bacteria that are resistant to antibiotics. (See also MICROBIOLOGY.)... bacteria

Tetracyclines

A group of broad-spectrum ANTIBIOTICS which include oxytetracycline, tetracycline, doxycycline, lymecycline, minocycline, and demeclocycline.

All the preparations are virtually identical, being active against both gram-negative and gram-positive bacteria (see GRAM’S STAIN). Derived from cultures of streptomyces bacteria, their value has lessened owing to increasing resistance to the group among bacteria. However, they remain the treatment of choice for BRUCELLOSIS, LYME DISEASE, TRACHOMA, PSITTACOSIS, Q FEVER, SALPINGITIS, URETHRITIS and LYMPHOGRANULOMA INGUINALE, as well as for infections caused by MYCOPLASMA, certain rickettsiae (see RICKETTSIA) and CHLAMYDIA. Additionally they are used in the treatment of ACNE, but are not advised in children under 12 as they may produce permanent discoloration of the teeth. Tetracyclines must not be used if a woman is pregnant as the infant’s deciduous teeth will be stained.... tetracyclines

Vaginosis

A vaginal infection characterized by a smelly discharge and the presence of Gardnerella, Mycoplasma, and other anaerobic bacteria, with the lack of Lactobacillus species.... vaginosis

Atypical Pneumonia

any one of a group of community-acquired *pneumonias that do not respond to penicillin but do respond to such antibiotics as tetracycline and erythromycin. They include infection with Mycoplasma pneumoniae, Chlamydia psittaci (see psittacosis), and Coxiella burnetii (see Q fever).... atypical pneumonia

Demeclocycline

n. a *tetracycline antibiotic that is used to treat infections caused by Chlamydia, rickettsiae, and mycoplasmas. It is also used to treat *syndrome of inappropriate secretion of antidiuretic hormone. Common side-effects are nausea, diarrhoea, and symptoms resulting from the growth of organisms not sensitive to the drug.... demeclocycline

Doxycycline

n. a *tetracycline antibiotic used to treat infections caused by Chlamydia, rickettsiae, mycoplasmas, and Brucella as well as Lyme disease. It may also be used in the prevention and treatment of malaria and the treatment of mouth ulcers and periodontitis. Side-effects are those of the other tetracyclines.... doxycycline

Eubacteria

pl. n. a very large group of bacteria with rigid cell walls and – typically – flagella for movement. The group comprises the so-called ‘true’ bacteria, excluding those, such as spirochaetes and mycoplasmas, with flexible cell walls.... eubacteria

Microbiology

The study of all aspects of micro-organisms (microbes) – that is, organisms which individually are generally too small to be visible other than by microscopy. The term is applicable to viruses (see VIRUS), BACTERIA, and microscopic forms of fungi, algae, and PROTOZOA.

Among the smallest and simplest microorganisms are the viruses. First described as ?lterable agents, and ranging in size from 20–30 nm to 300 nm, they may be directly visualised only by electron microscopy. They consist of a core of deoxyribonucleic or ribonucleic acid (DNA or RNA) within a protective protein coat, or capsid, whose subunits confer a geometric symmetry. Thus viruses are usually cubical (icosahedral) or helical; the larger viruses (pox-, herpes-, myxo-viruses) may also have an outer envelope. Their minimal structure dictates that viruses are all obligate parasites, relying on living cells to provide essential components for their replication. Apart from animal and plant cells, viruses may infect and replicate in bacteria (bacteriophages) or fungi (mycophages), which are damaged in the process.

Bacteria are larger (0·01–5,000 µm) and more complex. They have a subcellular organisation which generally includes DNA and RNA, a cell membrane, organelles such as ribosomes, and a complex and chemically variable cell envelope – but, unlike EUKARYOTES, no nucleus. Rickettsiae, chlamydia, and mycoplasmas, once thought of as viruses because of their small size and absence of a cell wall (mycoplasma) or major wall component (chlamydia), are now acknowledged as bacteria; rickettsiae and chlamydia are intracellular parasites of medical importance. Bacteria may also possess additional surface structures, such as capsules and organs of locomotion (?agella) and attachment (?mbriae and stalks). Individual bacterial cells may be spheres (cocci); straight (bacilli), curved (vibrio), or ?exuous (spirilla) rods; or oval cells (coccobacilli). On examination by light microscopy, bacteria may be visible in characteristic con?gurations (as pairs of cocci [diplococci], or chains [streptococci], or clusters); actinomycete bacteria grow as ?laments with externally produced spores. Bacteria grow essentially by increasing in cell size and dividing by ?ssion, a process which in ideal laboratory conditions some bacteria may achieve about once every 20 minutes. Under natural conditions, growth is usually much slower.

Eukaryotic micro-organisms comprise fungi, algae, and protozoa. These organisms are larger, and they have in common a well-developed internal compartmentation into subcellular organelles; they also have a nucleus. Algae additionally have chloroplasts, which contain photosynthetic pigments; fungi lack chloroplasts; and protozoa lack both a cell wall and chloroplasts but may have a contractile vacuole to regulate water uptake and, in some, structures for capturing and ingesting food. Fungi grow either as discrete cells (yeasts), multiplying by budding, ?ssion, or conjugation, or as thin ?laments (hyphae) which bear spores, although some may show both morphological forms during their life-cycle. Algae and protozoa generally grow as individual cells or colonies of individuals and multiply by ?ssion.

Micro-organisms of medical importance include representatives of the ?ve major microbial groups that obtain their essential nutrients at the expense of their hosts. Many bacteria and most fungi, however, are saprophytes (see SAPROPHYTE), being major contributors to the natural cycling of carbon in the environment and to biodeterioration; others are of ecological and economic importance because of the diseases they cause in agricultural or horticultural crops or because of their bene?cial relationships with higher organisms. Additionally, they may be of industrial or biotechnological importance. Fungal diseases of humans tend to be most important in tropical environments and in immuno-compromised subjects.

Pathogenic (that is, disease-causing) microorganisms have special characteristics, or virulence factors, that enable them to colonise their hosts and overcome or evade physical, biochemical, and immunological host defences. For example, the presence of capsules, as in the bacteria that cause anthrax (Bacillus anthracis), one form of pneumonia (Streptococcus pneumoniae), scarlet fever (S. pyogenes), bacterial meningitis (Neisseria meningitidis, Haemophilus in?uenzae) is directly related to the ability to cause disease because of their antiphagocytic properties. Fimbriae are related to virulence, enabling tissue attachment – for example, in gonorrhoea (N. gonorrhoeae) and cholera (Vibrio cholerae). Many bacteria excrete extracellular virulence factors; these include enzymes and other agents that impair the host’s physiological and immunological functions. Some bacteria produce powerful toxins (excreted exotoxins or endogenous endotoxins), which may cause local tissue destruction and allow colonisation by the pathogen or whose speci?c action may explain the disease mechanism. In Staphylococcus aureus, exfoliative toxin produces the staphylococcal scalded-skin syndrome, TSS toxin-1 toxic-shock syndrome, and enterotoxin food poisoning. The pertussis exotoxin of Bordetella pertussis, the cause of whooping cough, blocks immunological defences and mediates attachment to tracheal cells, and the exotoxin produced by Corynebacterium diphtheriae causes local damage resulting in a pronounced exudate in the trachea.

Viruses cause disease by cellular destruction arising from their intracellular parasitic existence. Attachment to particular cells is often mediated by speci?c viral surface proteins; mechanisms for evading immunological defences include latency, change in viral antigenic structure, or incapacitation of the immune system – for example, destruction of CD 4 lymphocytes by the human immunode?ciency virus.... microbiology

Microorganism

(microbe) n. any organism too small to be visible to the naked eye. Microorganisms include *bacteria, some *fungi, *mycoplasmas, *protozoa, *rickettsiae, and *viruses.... microorganism

Minocycline

n. a *tetracycline antibiotic active against a wide range of bacteria, including Chlamydia, Borrelia, meningococcus, rickettsiae, and mycoplasmas. Side-effects include loss of appetite, skin rash, and dizziness.... minocycline

Oxytetracycline

n. an antibiotic used to treat infections caused by a wide variety of bacteria, including Chlamydia and mycoplasmas, and acne. Side-effects are those of the other *tetracyclines.... oxytetracycline

Periwinkle

Catharanthus roseus

Apocynaceae

San: Nityakalyani;

Hin: Sadabahar, Baramassi;

Mal: Ushamalari, Nityakalyani

Tel: Billaganeru;

Tam: Sudukattu mallikai; Pun: Rattanjot;

Kan: Kasikanigale, Nitya Mallige

Importance: Periwinkle or Vinca is an erect handsome herbaceous perennial plant which is a chief source of patented cancer and hypotensive drugs. It is one of the very few medicinal plants which has a long history of uses as diuretic, antidysenteric, haemorrhagic and antiseptic. It is known for use in the treatment of diabetes in Jamaica and India. The alkaloids vinblastine and vincristine present in the leaves are recognized as anticancerous drugs. Vinblastine in the form of vinblastin sulphate is available in market under the trade name “VELBE” and Vincristine sulphate as “ONCOVIN” (Eli Lilly). Vinblastine is used in combination with other anticancer agents for the treatment of lymphocytic lymphoma, Hodgkin’s disease, testicular carcinoma and choriocarcinoma. Vincristine is used in acute leukemia, lymphosarcoma and Wilm’s tumour. Its roots are a major source of the alkaloids, raubasine (ajmalicine), reserpine and serpentine used in the preparation of antifibrillic and hypertension-relieving drugs. It is useful in the treatment of choriocarcinoma and Hodgkin’s disease-a cancer affecting lymph glands, spleen and liver. Its leaves are used for curing diabetes, menorrhagia and wasp stings. Root is tonic, stomachic, hypotensive, sedative and tranquilliser (Narayana and Dimri,1990).

Distribution: The plant is a native of Madagascar and hence the name Madagascar Periwinkle. It is distributed in West Indies, Mozambique, South Vi etnam, Sri Lanka , Philippines and Australia. It is well adapted to diverse agroclimatic situations prevalent in India and is commercially cultivated in the states of Tamil Nadu, Karnataka, Gujarat, Madhya Pradesh and Assam. USA, Hungary, West Germany, Italy, Netherlands and UK are the major consumers.

Botany: Catharanthus roseus (Linn.) G.Don.

syn. Vinca rosea Linn. belongs to the family Apocynaceae. It is an erect highly branched lactiferous perennial herb growing up to a height of one metre. Leaves are oblong or ovate, opposite, short-petioled, smooth with entire margin. Flowers are borne on axils in pairs. There are three flower colour types , pink, pink-eyed and white. Calyx with 5 sepal, green, linear, subulate. Corolla tube is cylindrical with 5 petals, rose-purple or white with rose-purple spot in the centre; throat of corolla tube hairy, forming a corona-like structure. The anthers are epipetalous borne on short filaments inside the bulging distal end of corolla tube converging conically above the stigma. Two characteristic secretary systems, namely a column like nectarium on both sides of pistil and a secretory cringulam circling the papillate stigma with a presumed role in pollination - fecundation process are present. Ovary bicarpellary, basally distinct with fused common style and stigma. The dehiscent fruit consists of a pair of follicles each measuring about 25 mm in length and 2.3 mm in diameter, containing up to thirty linearly arranged seeds with a thin black tegumen. On maturity, the follicles split along the length dehiscing the seeds.

Agrotechnology: Periwinkle grows well under tropical and subtropical climate. A well distributed rainfall of 1000 mm or more is ideal. In north India the low winter temperatures adversely affect the crop growth. It can grow on any type of soil ,except those which are highly saline, alkaline or waterlogged. Light soils, rich in humus are preferable for large scale cultivation since harvesting of the roots become easy.

Catharanthus is propagated by seeds. Fresh seeds should be used since they are short-viable. Seeds can be either sown directly in the field or in a nursery and then transplanted. Seed rate is 2.5 kg/ha for direct sowing and the seeds are drilled in rows 45 cm apart or broadcasted. For transplanted crop the seed rate is 500gm/ha. Seeds are sown in nursery and transplanted at 45x 30cm spacing after 60 days when the seedlings attain a height of 15-20cm Nursery is prepared two months in advance so that transplanting coincides with the on set of monsoons. Application of FYM at the rate of 15 t/ha is recommended. An alternate approach is to grow leguminous green manure crops and incorporate the same into the soil at flowering stage. Fertilisers are recommended at 80:40:40 kg N:P2O5:K2O/ha for irrigated crop and 60:30:30 kg/ha for rainfed crop. N is applied in three equal splits at planting and at 45 and 90 days after planting. 4 or 5 irrigations will be needed to optimise yield when rainfall is restricted. Fortnightly irrigations support good crop growth when the crop is grown exclusively as an irrigated crop. Weeding is carried out before each topdressing. Alternatively, use of fluchloraline at 0.75 kg a.i. /ha pre-plant or alachlor at 1.0 kg a.i. per ha as pre-emergence to weeds provides effective control of a wide range of weeds in periwinkle crop. Detopping of plants by 2cm at 50% flowering stage improves root yield and alkaloid contents. No major pests, other than Oleander hawk moth, have been reported in this crop. Fungal diseases like twig blight (top rot or dieback) caused by Phytophthora nicotianae., Pythium debaryanum, P. butleri and P. aphanidermatum; leaf spot due to Alternaria tenuissima, A. alternata, Rhizoctonia solani and Ophiobolus catharanthicola and foot-rot and wilt by Sclerotium rolfsii and Fusarium solani have been reported. However, the damage to the crop is not very serious. Three virus diseases causing different types of mosaic symptoms and a phyllody or little leaf disease due to mycoplasma -like organisms have also been reported; the spread of which could be checked by uprooting and destroying the affected plants.

The crop allows 3-4 clippings of foliage beginning from 6 months. The flowering stage is ideal for collection of roots with high alkaloid content. The crop is cut about 7 cm above the ground and dried for stem, leaf and seed. The field is irrigated, ploughed and roots are collected. The average yields of leaf, stem and root are 3.6, 1.5and 1.5 t/ha, respectively under irrigated conditions and 2.0, 1.0 and 0.75t/ha, respectively under rainfed conditions on air dry basis. The harvested stem and roots loose 80% and 70% of their weight, respectively. The crop comes up well as an undercrop in eucalyptus plantation in north India. In north western India a two year crop sequence of periwinkle-senna-mustard or periwinkle-senna- coriander are recommended for higher net returns and productivity (Krishnan,1995).

Properties and activity: More than 100 alkaloids and related compounds have so far been isolated and characterised from the plant. The alkaloid contents in different parts show large variations as roots 0.14-1.34%, stem 0.074-0.48%, leaves 0.32-1.16%, flowers 0.005-0.84%, fruits 0.40%, seeds 0.18% and pericarp 1.14% (Krishnan et al, 1983). These alkaloids includes monomeric indole alkaloids, 2-acyl indoles, oxindole, -methylene indolines, dihydroindoles, bisindole and others. Dry leaves contain vinblastine (vincaleucoblastine or VLB) 0.00013-0.00063%, and vincristine (leurocristine or LC) 0.0000003-0.0000153% which have anticancerous activity (Virmani et al, 1978). Other alkaloids reported are vincoside, isovincoside (strictosidine), catharanthine, vindolinine, lochrovicine, vincolidine, ajmalicine (raubasine), reserpine, serpentine, leurosine, lochnerine, tetrahydroalstonine, vindoline, pericalline, perivine, periformyline, perividine, carosine, leurosivine, leurosidine and rovidine. The different alkaloids possessed anticancerous, antidiabetic, diuretic, antihypertensive, antimicrobial, antidysenteric, haemorrhagic, antifibrillic, tonic, stomachic, sedative and tranquillising activities.... periwinkle

Infectious Disease

Any illness caused by a specific microorganism. The most important disease-causing organisms are viruses, bacteria, including rickettsiae, chlamydiae, and mycoplasmas, and fungi. Others are protozoa and worms.

In developed countries, infectious diseases are generally less of a threat than in the past because of better methods to control the spread of disease organisms (such as better sanitation and water purification); effective drugs; immunization; and better general health and nutrition.

For most infectious diseases, there is a time gap between the entry of the microorganisms into the body and the 1st appearance of symptoms. This incubation period, during which an infected person is likely to pass the microorganism to others, may be a few hours, a few days, or, in some cases, months.

Antibiotics and other antimicrobial drugs are the mainstay of treatment for bacterial infection. For viral infection, however, drug treatment is restricted to severe infections.... infectious disease




Recent Searches