November Health Dictionary

November: From 1 Different Sources


(American) Born in the month of November Novimber, Novymber
Health Source: Medical Dictionary
Author: Health Dictionary

Holostemma

Holostemma ada-kodien

Asclepiadaceae

San: Jivanti;

Hin: Chirvel, Charivel;

Mal: Atapathiyan, Atapotiyan, Atakotiyan;

Tam: Palaikkirai;

Tel: Palagurugu; Mar: Dudurli, Shidodi;

Guj: Kharner, Khiravel

Importance: Holostemma is a twining shrub with large flowers. The roots of Holostemma are useful in ophthalmopathy, orchitis, cough, burning sensation, stomachalgia, constipation, fever and tridoshas. The leaves, flowers and fruits are eaten as vegetable. The root is also used in spermatorrhoea. It is used in preparations of Vidaryadiganam, Dhanwandharam thaila, Manasamithravatakam, Balarishta and Anuthaila. It is also useful in eye diseases and it imparts resistance to diseases.

Distribution: The plant occurs in tropical countries. In India, it is found in Himalayas, Dehradun, Konkan, Bombay, Deccan, Karnataka, Kerala and Tamilnadu. It grows over hedges and in open forests especially on the lower slopes of the hills. It is also distributed in Sri Lanka, Burma and W. China.

Botany: Holostemma ada-kodien Schult. syn. Holostemma annulare (Roxb.) K. Schum.

Holostemma rheedii Wall. belongs to the family Asclepiadaceae. It is a laticiferous twining shrub with large conspicuous flowers. Leaves are simple, opposite and cordate. Flowers are purple, arranged in axillary umbellate cymes. Fruits are thick follicles, 9 cm long, cylindrical and bluntly pointed. The roots are long upto 1 m or more, irregularly twisted, thick and cylindrical. When dry it is yellowish brown to brown black in colour with nearly smooth surface bearing white scars and small depressions. A mature root is about 1-2 cm thick when extracted for use (Warrier et al, 1995).

Agrotechnology: Holostemma prefers a tropical climate. The plant is propagated vegetatively by stem cuttings, but mainly by seeds. The seeds are collected from the plant in Novemb er-December before being dispersed. Seeds are cleaned, dried and stored for sowing. The stored seeds after soaking in water for 4-5 hours are sown in the seedbeds. About one month old seedlings are then planted in polybags of size 14x10cm which are filled with soil, sand and dried cowdung in 1:1:1 ratio, respectively. Polybags should be kept in shade and irrigated. About 1-1.5 month old seedlings are ready for transplanting. Pits of 30cm cube size are taken at 1-1.2m distance and filled with 10kg dried cowdung and sand. This is covered with surface soil and formed into a mound. Seedlings are transplanted on to the mounds from the polybags carefully. Regular irrigation is to be given till flowering. To aid in trailing, staking is given one month after planting. Flowering and fruiting occurs in November-December. Harvesting can be done at the end of second year when the vines start drying up. Harvesting is done by digging up the tubers. The tubers are cut into pieces of 10cm length and dried in sun before sale (Prasad et al, 1997).

Properties and activity: Holostemma tubers give -amyrin, lupeol and -sitosterol. Alanine, aspartic acid, glycine, serine, threonine and valine were detected chromatographically (Hussain et al, 1992). The root is antidiabetic, antigonorrhoeic, bechic, alterative, tonic, lactative, ophthalmic, emollient, stimulant, aphrodisiac, expectorant and galactagogue.... holostemma

Indian Senna

Cassia senna

Caesalpiniaceae

San: Svarnapatri;

Hin: Sanay, Sana Ka Patt;

Ben: Sonamukhi;

Mal: Sunnamukki, Chonnamukki, Nilavaka;

Tam: Nilavirai, Nilavakai;

Tel: Netatangedu

Importance: Indian Senna or Tinnevelly senna is a shrub very highly esteemed in India for its medicinal value. The leaves are useful in constipation, abdominal disorders, leprosy, skin diseases, leucoderma, splenomegaly, hepatopathy, jaundice, helminthiasis, dyspepsia, cough, bronchitis, typhoid fever, anaemia, tumours and vitiated conditions of pitta and vata (Warrier et al,1994). It is used in Ayurvedic preparations; “Pancha Sakara Churna”, “Shat Sakara Churna” and “Madhu Yastyadi Churna” used for constipation. Its use is widespread in Unani system and some of the important products of this system containing senna are “Itrifal Mulayyin”, “Jawarish Ood Mulayyin”, “Hab Shabyar”, “Sufuf Mulliyin”, “Sharbat Ahmad Shahi”, etc. used as a mild laxative (Thakur et al, 1989).

Distribution: The plant is of Mediterranean origin. It is found in Somalia, Saudi Arabia, parts of Pakistan and Kutch area of Gujarat. It is largely cultivated in Tirunelveli, Ramanathapuram, Madurai and Salem districts of Tamil Nadu.

Botany: The genus Cassia, belonging to the family Caesalpiniaceae, comprises of a number of species, namely,

C. senna Linn. syn. C. angustifolia Vahl.

C. absus Linn.

C. alata Linn.

C. auriculata Linn.

C. burmanni Wight. syn. C. obovata (Linn.) Collad.

C. glauca Lam.

C. javanica Linn.

C. mimosoides Linn.

C. obtusifolia Linn. syn. C. tora Linn.

C. occidentalis Linn.

C. pumila Lam.

C. slamea Lam.

C. acutifolia Delile.

C. sophera Linn.

C. senna is a shrub or undershrub, 60-75cm in height with pale subterete or obtusely angled erect or spreading branches. Leaves are paripinnate. Leaflets are 5-8 in number, ovate-lanceolate and glabrous. Flowers are yellowish, many and arranged in axillary racemes. Fruits are flat legumes, greenish brown to dark brown and nearly smooth (Chopra et al,1980, Warrier et al,1994).

In commerce, the leaves and pods obtained from C. senna are known as “ Tinnevelly Senna” and those from C. acutifolia Delile. as “Alexandrian Senna”. The leaves of C. acutifolia are narrower than C. senna, otherwise both resemble to a large extent (Thakur et al, 1989). All the true Sennas have the portions of their leaves unequally divided. In some kinds the lower part of one side is reduced to little more than a line in breadth, while the other is from a quarter to half an inch in breadth. The drug known under the name of East Indian Senna is nearly free from adulteration; and as its properties appear identical with those of the Alexandrian and the price being less, it probably will supersede it in general practice. Its size and shape readily identify it (Graves, 1996).

Agrotechnology: The plant requires a mild subtropical climate with warm winters which are free from frost for its growth. Semiarid areas with adequate irrigation facilities are ideal for cultivation. Areas having high rainfall, humidity and poor drainage are not suitable. Light or medium loamy soils with adequate drainage and pH varying from 7.0-8.2 are preferable. In South India both summer and winter crops are possible. The plant is propagated by seeds. The seed rate required is 15-20kg/ha. Seeds are sown in October-November (winter rainfed crop) or in February-March (irrigated crop). Higher seed rate is required for unirrigated crop. Seeds are sown in lines 30cm apart. Application of 5-10t of FYM/ha before planting or raising a green manure crop is beneficial. About 40kg N and 25-50kg P2O5/ha applied as basal dressing and 40kg N/ha applied in 2 split dozes as top dressing gave better yield. While the rainfed crop is grown without irrigation, the irrigated crop requires 5-8 light irrigations during the entire growing season. The crop requires 2-3 weedings and hoeings in order to keep it free from weeds. Alternaria alternata causes leaf spot and dieback but the disease is not serious. In North India, the plant is attacked by the larvae of butterfly Catopsilia pyranthe which can be controlled by planting the crop in March-April instead of June-July. Under irrigated conditions, the first crop is obtained after 90 days of planting. The leaves are stripped by hand when they are fully green, thick and bluish-green in colour. The second crop is taken 4 weeks after the first harvest and the third 4-6 weeks after the second one. The last harvest of leaves is done when the entire crop is harvested along with the pods. Yield under irrigated conditions is nearly1.4t of leaves and 150kg pods/ha and under unirrigated conditions is 500-600kg leaves and 80-100kg pods/ha. The leaves are dried in thin layers under shade so as to retain the green colour and the pods are hung for 10-12 days to get dried. The leaves and pods are cleaned, graded and marketed (Husain et al, 1993).

Properties and Activity: Leaves contain glucose, fructose, sucrose and pinnitol. Mucilage consists of galactose, arabinose, rhamnose and galacturonic acid. Leaves also contain sennoside-C(8,8’- diglucoside of rhein-aloe-emodin-dianthrone). Pods contain sennosides A and B, glycoside of anthraquinones rhein and chrysophanic acid. Seeds contain -sitosterol (Husain et al, 1992). Leaves and pods also contain 0.33% -sterol and flavonols-kaempferol, kaempferin, and iso-rhamnetin. Sennoside content of C. acutifolia is higher ranging from 2.5% to 4.5% as compared to C. angustifolia ranging from 1.5 % to 2.5%.

The purgative activity of Senna is attributed to its sennosides. The pods cause lesser griping than the leaves. Leaf and pod is laxative. The leaves are astringent, bitter, sweet, acrid, thermogenic, cathartic, depurative, liver tonic, anthelmintic, cholagogue, expectorant and febrifuge.... indian senna

Castor

Ricinus communis

Euphorbiaceae

San: Erandah, Pancangulah;

Hin: Erandi, Erand;

Ben: Bherenda;

Mal: Avanakku;

Tam: Amanakku, Kootaimuttu, Amanakkam Ceti;

Kan: Haralu, Manda, Oudla;

Tel: Erandamu, Amudamu

Importance: Castor is a perennial evergreen shrub. The Sanskrit name erandah describes the property of the drug to dispel diseases. It is considered as a reputed remedy for all kinds of rheumatic affections. They are useful in gastropathy such as gulma, amadosa, constipation, inflammations, fever, ascitis, strangury, bronchitis, cough, leprosy, skin diseases, vitiated conditions of vata, colic, coxalgia and lumbago. The leaves are useful in burns, nyctalopia, strangury and for bathing and fermentation and vitiated conditions of vata, especially in rheumatoid arthritis, urodynia and arthralgia. Flowers are useful in urodynia and arthralgia and glandular tumours. Seeds are useful in dyspepsia and for preparing a poultice to treat arthralgia. The oil from seeds is a very effective purgative for all ailments caused by vata and kapha. It is also recommended for scrotocele, ascites, intermittent fever, gulma, colonitis, lumbago, coxalgia and coxitis (Warrier et al, 1996). Oil is also used for soap making. Fresh leaves are used by nursing mothers in the Canary Island as an external application to increase the flow of milk. Castor oil is an excellent solvent of pure alkaloids and as such solutions of atropine, cocaine, etc. is used in ophthalmic surgery. It is also dropped into the eye to remove the after-irritation caused by the removal of foreign bodies.

Distribution: It is a native of N. E. tropical Africa. It is found throughout India, cultivated and found wild upto 2400m.

Botany: Ricinus communis Linn. belongs to the family Euphorbiaceae. It is a monoecious evergreen shrub growing upto 4m. Leaves are alternate, palmatifid, 6-10 lobed, each 1- nerved with many lateral nerves and peltate. Lobes are lanceolate, thinly pubescent below, margin serrate and apex acuminate. Paniculate racemes are terminal with male flowers below, female ones above. Perianth is cupular, splitting into 3-5 lobes, laceolate, valvate, margin inrolled and acuminate. Filaments of stamen are connate and repeatedly branched with divergent anther cells. Sepals are 5, sub-equal, lanceolate, valvate and acute. Ovary is globose, echinate, 3-locular with 3 ovules and pendulous. Styles are 3, stout, papillose, stigmatiferous. Capsules are 3-lobed and prickly with oblong seeds having smooth testa and marbled, shiny and carunculate. R. bronze King and R. africanus are two good garden varieties which are known as Italian and East Indian Castors, respectively (Mathew, 1983, Grieve and Leyel, 1992).

Agrotechnology: Castor is cultivated both in the plains and the hills. As it has deep root system it is hardy and capable of resisting drought. It does not withstand waterlogging and frost. It requires hard dry climate for proper development of fruits and seeds. It requires a well- drained soil, preferably sandy loam or loamy sand. High soil fertility is of less importance as compared to the good physical condition of the soil. It cannot tolerate alkalinity. It is generally grown in red loamy soils, black soils and alluvial soils. The plant is seed propagated. The seed rate required is 5-12 kg/ha (pure crop) and 3 kg/ha (mixed crop). Seeds are to be sown on a hot bed early in March. When the plants come up individual plant is to be planted in a separate pot filled with light soil and plunged into a fresh hot bed. The young plants are to be kept in glass houses till early June where they are hardened and kept out. The suitable season of growing is kharif season. The crop is usually sown in April and planting is done in early July. The land is to be ploughed 2-3 times with the onset of rains and is repeated after rain. The spacing recommended is 60X90cm in case of pure crop but it is seldom cultivated pure. It is usually grown mixed with crops such as jowar, arhar, chilly, groundnut, cowpea, cotton, etc. 10-15t FYM/ha and 50kg N, 50kg P2O5 and 20kg K2O/ha will be sufficient. Addition of neem cake is beneficial as it increases oil content. There should be sufficient moisture in the field at the time of sowing. A month after planting, weeding and earthing up is to be done. The plant is attacked by hairy caterpillar, castor semi - looper, castor seed caterpillar, etc. which can be managed by integrated pest management measures. The leaf blight disease occurring in castor can be controlled by spraying with Bordeaux mixture 2-3 times at 15 days interval. Harvesting of ripe fruits can be done from the end of November till the end of February. The fruit branches are picked when they are still green to avoid splitting and scattering of the seeds. The pods are to be heaped up in the sun to dry. Then the seeds are to be beaten with stick and winnowed. Roots, leaves, flowers, seeds and oil constitute the economic parts. The average yield is 500-600kg/ha (Thakur, 1990).

Properties and activity: The beancoat yielded lupeol and 30-norlupan-3 -ol-20-one. Roots, stems and leaves contain several amino acids. Flowers gave apigenin, chlorogenin, rutin, coumarin and hyperoside. Castor oil is constituted by several fatty acids (Husain et al, 1992). Seed coat contained 1. 50-1. 62% lipids and higher amounts of phosphatides and non-saponifiable matter than seed kernel. Fresh leaves protected against liver injury induced by carbon tetra chloride in rats while cold aqueous extract provided partial protection (Rastogi et al, 1991). Root and stem is antiprotozoal and anticancerous. Root, stem and seed are diuretic. The roots are sweet, acrid, astringent, thermogenic, carminative, purgative, galactagogue, sudorific, expectorant and depurative. Leaves are diuretic, anthelmintic and galactagogue. Seeds are acrid, thermogenic, digestive, cathartic and aphrodisiac. Oil is bitter, acrid, sweet, antipyretic, thermogenic and viscous (Warrier et al, 1996). Castor oil forms a clean, light- coloured soap, which dries and hardens well and is free from smell. The oil varies much in activity. The East Indian is the more active, but the Italian has the least taste. Castor oil is an excellent solvent of pure alkaloids. The oil furnishes sebacic acid and caprylic acid. It is the most valuable laxative in medicines. It acts in about 5 hours, affecting the entire length of the bowel, but not increasing the flow of bile, except in very large doses. The mode of its action is unknown. The oil will purge when rubbed into the skin (Grieve and Leyel, 1992).... castor

Fumitory

Fumaria officinalis. N.O. Fumariaceae.

Synonym: Earth Smoke.

Habitat: Roadsides, fields, gardens.

Features ? Stem weak, brittle, sometimes erect, sometimes trailing, six to twelve inches long. Leaves alternate, twice pinnate, bluish-green. Flowers (May to November) reddish-rose, several on stalk.

Part used ? Herb.

Action: Slightly tonic, diuretic, aperient.

For stomach and liver disorders and minor skin blemishes. Infusion of 1

ounce to 1 pint may be taken freely.... fumitory

Costus

Costus speciosus

Zingiberaceae

San: Pushkara, Kashmeera, Kemuka;

Hin: Kebu, Keyu, Kust;

Ben: Keu, Kura

Mal: Channakkizhangu, Channakoova;

Tam: Kostam; Mar: Penva;

Tel: Kashmeeramu

Importance: Costus is one of the plants which contains diosgenin in its rhizome. It is widely used as starting material in the commercial production of steroidal hormones. The rhizomes are useful in vitiated conditions of kapha and pitta, burning sensation, flatulence, constipation, helminthiases, leprosy, skin diseases, fever, hiccough, asthma, bronchitis, inflammation and aneamia. It is used to make sexual hormones and contraceptives (Warrier et al,1994).

Distribution: The plant is widely distributed in Asia and other tropical countries like India, Nepal, Pakistan, Sri Lanka and China. In India, it occurs mostly in Arunachal Pradesh, Meghalaya, Nagaland, Tamil Nadu, Assam, Tripura and Kerala.

Botany: Costus speciosus (Koenig.) Sm. belonging to the family Zingiberaceae consists of two varieties viz., var. nepalensis Rose., found only in Nepal and Arunachal Pradesh and var. argycophyllus Wall., having a wide distribution in India.

The plant is a succulent herb with long leafy spirally twisted stems, 2-3m in height and horizontal rhizomes. Leaves are simple, spirally arranged, oblanceolate or oblong, glabrous above, silky pubescent beneath with broad leaf sheaths. Flowers are white, large, fragrant, arranged in dense terminal spikes. Bracts are bright red. The single stamen present is perfect, lip large with incurved margins. Fruits are globose or ovoid capsules with obovoid or sub- globose seeds (Warrier et al,1994).

Agrotechnology: Costus can be raised under a wide range of agroclimatic conditions. It prefers sandy loam soil for good growth. Propagation is by rhizomes. The best season for planting is April- May. The seed rate recommended is 2-2.4t/ha. The spacing adopted is 50x50cm. After an initial ploughing FYM or poultry manure should be applied at the rate of 30t/ha and the field is to be ploughed again irrigated and prepared to obtain a fine seed bed. Furrows are opened and the rhizome pieces are placed horizontally at a depth of 8-10cm and covered with soil. Care is taken to place the eye buds facing upwards. After 70-75 days about 90-95% sprouting is obtained. Desiccation of the young sprouts have been observed in the hot summer months, necessitating liberal water supply during the period. As September-November is the period of maximum tuberization at least two irrigations should be given at that time. One during the sprouting period of the crop followed by two more keeps the crop fairly free of weeds. Application of 37t/ha of poultry manure and fertilizers, 60kg P2O5 and 40kg K2O /ha as a basal doze, along with 80kg N/ha applied in 3 equal split dozes will take care. Crop is harvested at the end of seven months. Harvesting includes 2 operations, cutting the aerial shoots and digging out the rhizomes. Cost of production of diosgenin ranges from Rs. 271-300/kg (Atal, et al,1982).

Properties and activity: Tubers and roots contain diosgenin, 5 -stigmast-9(11)-en-3 ol, sitosterol- -D- glucoside, dioscin, prosapogenins A and B of dioscin, gracillin and quinones. Various saponins, many new aliphatic esters and acids are reported from its rhizomes, seeds and roots. Seeds, in addition, contain - tocopherol. Saponins from seeds are hypotensive and spasmolytic. Rhizomes possess antifertility, anticholinestrase, antiinflammatory, stimulant, depurative and anthelmintic activities (Hussain et al, 1992).... costus

Dichrostachys Cinerea

W. & A.

Synonym: Cailliea cinerea Macb.

Family: Mimosaceae.

Habitat: Northwestern and Central India, Maharashtra, from North Karnataka southwards.

Ayurvedic: Virataru, Vellantaru, Viravrksha.

Siddha/Tamil: Vidathalai.

Folk: Varatuli, Khairi.

Action: Root—astringent and diuretic; used in renal affections, urinary calculi, also in rheumatism. Tender shoots—applied externally for ophthalmia.

The plant foliage contain tannin— 2.40, 5.60 and 4.40 mg/100 g during February, June and November respectively. Roots afforded n-octacosanol, beta-amyrin, friedelan-3-one, friede- lan-3-beta-olandbeta-sitosterol. Flowers contain cyanidin and quercetin.

Dosage: Root, bark—50-100 ml decoction. (CCRAS.)... dichrostachys cinerea

National Electronic Library For Health

This National Health Service initiative went online in November 2000. It aims to provide health professionals with easy and fast access to best current knowledge from medical journals, professional group guidelines, etc. Unbiased data can be accessed by both clinicians and the public.... national electronic library for health

Fenugreek

Trigonella foenum-graecum

Fabaceae

San: Methika, Methi, Kalanusari;

Hin: Meti, Mutti; Ben, Mar: Methi;

Mal: Uluva;

Tam: Ventayam;

Kan: Mentya, Menlesoppu;

Tel: Mentulu, Mentikura; Arab: Hulabaha

Importance: Fenugreek or Greek Hayes is cultivated as a leafy vegetable, condiment and as medicinal plant. The leaves are refrigerant and aperient and are given internally for vitiated conditions of pitta. A poultice of the leaves is applied for swellings and burns. Seeds are used for fever, vomiting, anorexia, cough, bronchitis and colonitis. In the famous Malayalam treatises like ‘Padhyam’ ‘Kairali’ and ‘Arunodhayam’, uluva is recommended for use as kalanusari in Dhanvantaram formulations of ‘Astaghradayam’. An infusion of the seeds is a good cool drink for small pox patients. Powdered seeds find application in veterinary medicine. An aqueous extract of the seeds possesses antibacterial property (Kumar et al, 1997; Warrier et al, 1995).

Distribution: Fenugreek is a native of South Eastern Europe and West Asia. In India fenugreek is grown in about 0.30 lakh ha producing annually about 30,000 tonnes of seeds. The major states growing fenugreek are Rajasthan, Madhya Pradesh, Gujarat, Uttar Pradesh, Maharashtra, Punjab and Karnataka. It is grown wild in Kashmir and Punjab.

Botany: Trigonella foenum-graecum Linn. belongs to family, Fabaceae. It is an annual herb, 30-60cm in height, leaves are light green, pinnately trifoliate, leaflets toothed, flowers are white or yellowish white, papilionaceous and axillary. Fruits are legumes, 5-7.5cm long, narrow, curved, tapering with a slender point and containing 10-20 deeply furrowed seeds per pod. There are two species of the genus Trigonella which are of economic importance viz. T. foenum graecum, the common methi and T. corniculata, the Kasuri methi. These two differ in their growth habit and yield. The latter one is a slow growing type and remains in rosette condition during most of the vegetative growth period (Kumar et al, 1997; Warrier et al, 1995).

Agrotechnology: Fenugreek has a wide adaptability and is successfully cultivated both in the tropics as well as temperate regions. It is tolerant to frost and freezing weather. It does well in places receiving moderate or low rainfall areas but not in heavy rainfall area. It can be grown on a wide variety of soils but clayey loam is relatively better. The optimum soil pH should be 6-7 for its better growth and development. Some of the improved cultivars available for cultivation are CO1 (TNAU), Rajendra Kanti (RAU), RMt-1(RAU) and Lam Selection-1 (APAU). Land is prepared by ploughing thrice and beds of uniform size are prepared. Broadcasting the seed on the bed and raking the surface to cover the seeds is normally followed. But to facilitate intercultural operations, line sowing is also advocated in rows at 20-25cm apart. Sowing in the plains is generally in September-November while in the hills it is from March. The seed rate is 20-25kg/ha and the seeds germinate within 6-8 days. Besides 15t of FYM, a fertiliser dose of 25:25:50kg NPK/ha is recommended. Entire P,K and half N are to be applied basally and the remaining half N 30 days after sowing. First irrigation is to be given immediately after sowing and subsequent irrigations at 7-10 days interval. Hoeing and weeding are to be done during the early stages of plant growth and thinning at 25-30 days to have a spacing of 10-15cm between plants and to retain 1-2 plants per hill. Root rot (caused by Rhizoctonia solani) is a serious disease and can be controlled by drenching carbendazim 0.05% first at the onset of the disease and another after one monthof first application. In about 25-30 days, young shoots are nipped off 5cm above ground level and subsequent cuttings of leaves may be taken after 15 days. It is advisable to take 1-2 cuttings before the crop is allowed for flowering and fruiting when pods are dried, the plants are pulled out, dried in the sun and seeds are threshed by beating with stick or by rubbing with hands. Seeds are winnowed, cleaned and dried in the sun. They may be stored in gunny bags lined with paper. An yield of 1200-1500kg of seeds and about 800-1000kg of leaves may be obtained per hectare in crops grown for both the purposes (Kumar et al, 1997).

Properties and activity: Seeds contain sapogenins-diosgenin, its 25-epimer(yamogenin), tigogenin, gitogenin, yuccagenin, 25-2-spirosta-3-5-diene and its -epimer. Seeds also contain a C27-steroidal sapogenin-peptide ester-fenugreekine. Seeds, in addition, contain 4-hydroxyleucine and saponins-fenugrins A-E:two furostanol glycoxides-trigonelloxide C and (255)-22-O-methyl-52-firostan-3 ,22,26,triol-3-O- -rhamnopyrans syl(1-2) C- -D-glucopyranosyl (1-3)- -D- glucopyranoxide-26-O- -D-glucopyranoxide.

Other chemical constituents are sterols- -sitosterol and cholesterol, flavone C- glycosides-vitexin, iso-vitexin, vitexin-2”-O-P-coumarate and vicenin-2. Flavonoids- quercetin and luteolin, flavonoid glycoside-vicenin-I. Invitro seedling callus culture gave flavonoids-luteolin and vitexin-1-glycoside. An essential oil is also reported from seeds. Leaves gave saponins-gracecunins A-G, flavonoids- kaempferol and quercetin; sterols- - sitosterol, sapogenins-diosgenin, gitogenin coumarin-scopoletin is also reported from the plant.

Seeds are bitter, mucilaginous, aromatic, carminative, tonic, diuretic, thermogenic, galactagogue, astringent, emollient, amophrodisiac, antirheumatic, CNS depressant and antiimplantation. Fenugreekine is hypoglycaemic, diuretic, hypotensive, cardiotonic, antiphlogistic. It showed 80% inhibition of vaccina virus.... fenugreek

Grapes

See also Raisins, Wine.

Nutritional Profile Energy value (calories per serving): Moderate Protein: Low Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: Low Sodium: Low Major vitamin contribution: Vitamin A, vitamin C Major mineral contribution: Phosphorus

About the Nutrients in This Food Grapes are high in natural sugars, but even with the skin on they have less than one gram dietary fiber per serving. The most important nutrient in grapes is vitamin C. A serving of 10 green or red Thompson seedless grapes has 5.3 mg vitamin C (7 percent of the R DA for a woman, 6 percent of the R DA for a man). The tart, almost sour flavor of unripened grapes comes from natu- rally occurring malic acid. As grapes ripen, their malic acid content declines while their sugar content rises. R ipe eating grapes are always sweet, but they have no stored starches to convert to sugars so they won’t get sweeter after they are picked.

The Most Nutritious Way to Serve This Food Fresh and ripe.

Buying This Food Look for: Plump, well-colored grapes that are firmly attached to green stems that bend easily and snap back when you let them go. Green grapes should have a slightly yellow tint or a pink blush; red grapes should be deep, dark red or purple. Avoid: Mushy grapes, grapes with wrinkled skin, and grapes that feel sticky. They are all past their prime. So are grapes whose stems are dry and brittle. Characteristics of Different Varieties of Grapes Red grapes Cardinal  Large, dark red, available March–August Emperor  Large red with seeds. September–March Flame  Seedless, medium to large, red. June–August R ibier  Large, blue-black, with seeds. July–February Tokay  Large, bright red, seeds. August–November Queen  Large, bright to dark red, seeds. June–August White grapes Almeria  Large, golden. August–October Calmeria Longish, light green. October–February Perlette  Green, seedless, compact clusters. May–July Thompson Seedless, green to light gold. June–November Source: The Fresh Approach to Grapes (United Fruit & Vegetable Associat ion, n.d.).

Storing This Food Wrap grapes in a plastic bag and store them in the refrigerator. Do not wash grapes until you are ready to use them.

Preparing This Food To serve fresh grapes, rinse them under running water to remove debris, then drain the grapes and pick off stems and leaves. To peel grapes (for salads), choose Catawba, Concord, Delaware, Niagara, or Scup- pernong, the American varieties known as “slipskin” because the skin comes off easily. The European varieties (emperor, flame, Tokay, Muscat, Thompson) are more of a challenge. To peel them, put the grapes into a colander and submerge it in boiling water for a few seconds, then rinse or plunge them into cold water. The hot water makes cells in the grape’s flesh swell, stretching the skin; the cold bath makes the cells shrink back from the skin which should now come off easily.

What Happens When You Cook This Food See above.

How Other Kinds of Processing Affect This Food Juice. Red grapes are colored with anthocyanin pigments that turn deeper red in acids and blue, purple, or yellowish in basic (alkaline) solutions. As a result, red grape juice will turn brighter red if you mix it with lemon or orange juice. Since metals (which are basic) would also change the color of the juice, the inside of grape juice cans is coated with plastic or enamel to keep the juice from touching the metal. Since 2000, following several deaths attributed to unpasteurized apple juice contaminated with E. coli O157:H7, the FDA has required that all juices sold in the United States be pasteurized to inactivate harmful organ- isms such as bacteria and mold. Wine-making. Grapes are an ideal fruit for wine-making. They have enough sugar to pro- duce a product that is 10 percent alcohol and are acidic enough to keep unwanted micro- organisms from growing during fermentation. Some wines retain some of the nutrients originally present in the grapes from which they are made. (See wine.) Drying. See r aisins.

Medical Uses and/or Benefits Lower risk of cardiovascular disease, diabetes, and some forms of cancer. Grape skin, pulp, and seed contain resveratrol, one of a group of plant chemicals credited with lowering cholesterol and thus reducing the risk of heart attack by preventing molecular fragments called free radicals from linking together to form compounds that damage body cells, leading to blocked arteries (heart disease), glucose-damaged blood vessels (diabetes), and unregulated cell growth (cancer). The juice from purple grapes has more resveratrol than the juice from red grapes, which has more resveratrol than the juice from white grapes. More specifically, in 1998, a team of food scientists from the USDA Agricultural Research Service identified a native American grape, the muscadine, commonly used to make grape juice in the United States, as an unusually potent source of resveratrol.... grapes

Greater Ammi

Ammi majus

Apiaceae

Importance: Greater Ammi, also known as Bishop’s weed or Honey plant is an annual or biennial herb which is extensively used in the treatment of leucoderma (vitiligo) and psoriasis. The compounds responsible for this are reported to be furocoumarins like ammoidin (xanthotoxin), ammidin (imperatorin) and majudin (bergapten) present in the seed. Xanthotoxin is marketed under the trade name “Ox soralen” which is administered orally in doses of 50 mg t.d. or applied externally as 1% liniment followed by exposure of affected areas to sunlight or UV light for 2 hours. It is also used in “Suntan lotion”. Meladinine is a by-product of Ammi majus processing, containing both xanthotoxin and imperatorin sold in various formulations increases pigmentation of normal skin and induces repigmentation in vitiligo. Imperatorin has antitumour activity. Fruit or seed causes photosensitization in fouls and sheep.

Distribution: The plant is indigenous to Egypt and it grows in the Nile Valley, especially in Behira and Fayoom. It is also found in the basin of the Mediterranean Sea, in Syria, Palestine, Abyssinia, West Africa, in some regions of Iran and the mountains of Kohaz (Ramadan, 1982). It grows wild in the wild state in Abbottabad, Mainwali, Mahran and is cultivated in Pakistan. The crop was introduced to India in the Forest Research Institute, Dehra Dun, in 1955 through the courtesy of UNESCO. Since then, the crop has been grown for its medicinal fruit in several places in Uttar Pradesh, Gujarat, Kashmir and Tamil Nadu.

Botany: Ammi majus Linn. belongs to the family Apiaceae (Umbelliferae). A. visnaga is another related species of medicinal importance. A. majus is an annual or beinnial herb growing to a height of 80 to 120 cm. It has a long tap root, solid erect stem, decompound leaves, light green alternate, variously pinnately divided, having lanceolate to oval segments. Inflorescence is axillary and terminal compound umbels with white flowers. The fruits are ribbed, ellipsoid, green to greenish brown when immature, turning reddish brown at maturity and having a characteristic terebinthinate odour becoming strong on crushing with extremely pungent and slightly bitter taste.

Agrotechnology: Ammi is relatively cold loving and it comes up well under subtropical and temperate conditions. It does not prefer heavy rainfall. Though the plant is biennial it behaves as an annual under cultivation in India. A mild cool climate in the early stages of crop growth and a warm dry weather at maturity is ideal. It is cultivated as a winter annual crop in rabi season. A wide variety of soils from sandy loam to clay loam are suitable. However, a well drained loamy soil is the best. Waterlogged soils are not good. Being a hardy crop, it thrives on poor and degraded soils.

The plant is seed propagated. Seeds germinate within 10-12 days of sowing. The best time of sowing is October and the crop duration is 160-170 days in north India. Crop sown later gives lower yield. The crop can be raised either by direct sowing of seed or by raising a nursery and then transplanting the crop. Seed rate is 2 kg/ha. The land is brought to a fine tilth by repeated ploughing and harrowing. Ridges and furrows are then formed at 45-60 cm spacing. Well decomposed FYM at 10-15 t/ha and basal fertilisers are incorporated in the furrows. Seeds being very small are mixed with fine sand or soil, sown in furrows and covered lightly with a thin layer of soil. A fertilizer dose of 80:30:30 kg N, P2O5 and K2O/ha is generally recommended for the crop while 150:40:40 kg/ha is suggested in poor soils for better yields. The furocoumarin content of Ammi majus is increased by N fertiliser and the N use efficiency increases with split application of N at sowing, branching and at flowering. For obtaining high yields it is essential to give one or two hoeings during November to February which keeps down the weeds. If winter rains fail, one irrigation is essential during November to January. As the harvesting season is spread over a long period of time, two irrigations during March and April meets the requirements of the crop (Chadha and Gupta, 1995).

White ants and cut worms are reported to attack the crop which can be controlled by spraying the crop with 40g carbaryl in 10 l of water. Damping off and powdery mildew are the common diseases of the crop. Seed treatment with organomercuric compounds is recommended for damping off. To control powdery mildew the crop is to be sprayed with 30g wettable sulphur in 10 l of water whenever noticed.

The crop flowers in February. Flowering and maturity of seed is spread over a long period of two months. The primary umbels and the early maturing secondary umbels are the major contributors to yield. A little delay in harvesting results in the shattering of the seed which is the main constraint in the commercial cultivation of the crop and the main reason for low yields in India. Sobti et al (1978) have reported increased yield by 50 - 60% by the application of planofix at 5 ppm at flower initiation and fruit formation stages. The optimum time of harvest is the mature green stage of the fruit in view of the reduced losses due to shattering and maximum contents of furocoumarins. The primary umbels mature first within 35-45 days. These are harvested at an interval of 2-4 days. Later, the early appearing secondary umbels are harvested. Afterwards, the entire crop is harvested, stored for a couple of days and then threshed to separate the seeds. The seed yield is 900-1200 kg/ha.

Postharvest technology: The processing of seed involves solvent extraction of powdered seeds, followed by chilling and liquid extraction and chromatographic separation after treatment with alcoholic HCl. Bergapten, xanthotoxin and xanthotoxol can be separated. Xanthotoxol can be methylated and the total xanthotoxin can be purified by charcoal treatment in acetone or alcohol.

Properties and activity: Ammi majus fruit contains amorphous glucoside 1%, tannin 0.45%, oleoresin 4.76%, acrid oil 3.2%, fixed oil 12.92%, proteins 13.83% and cellulose 22.4%. This is one of the richest sources of linear furocoumarins. Ivie (1978) evaluated the furocoumarin chemistry of taxa Ammi majus and reported the presence of xanthotoxin, bergapten, imperatorin, oxypencedanin, heraclenin, sexalin, pabulenol and many other compounds. Furocoumarins have bactericidal, fungicidal, insecticidal, larvicidal, moluscicidal, nematicidal, ovicidal, viricidal and herbicidal activities (Duke, 1988).... greater ammi

Shaken Impact Syndrome

A type of non-accidental head-injury to infants. A study published in 2000 (Lancet, 4 November) suggests that almost 25 out of 100,000 children under a year old sustain brain damage from shaken impact syndrome, even if they do not strike any hard surface. So, of around 685,000 babies in this age-group in Britain, as many as 170 a year may suffer injury from violent shaking. The median age for admission to hospital for the condition in Scotland was 2.2 months in the 18 months from July 1998. A Swedish report has concluded that children at risk from CHILD ABUSE can be identi?ed and the incidence reduced by legislation banning corporal punishment. (See also NON-ACCIDENTAL INJURY (NAI).)... shaken impact syndrome

Violet

Viola odorata. N.O. Violaceae.

Habitat: Damp woods and other shady places.

Features ? This is, perhaps, best known of all wild plants, with its long-stalked, heart- shaped leaves, and delicate, characteristically-scented and coloured flowers.

Part used ? Leaves and flowers.

Action: Antiseptic and expectorant.

Remarkable claims have been made for violet leaves in the treatment of malignant tumours. The case of Lady Margaret Marsham, of Maidstone, was reported in the Daily Mail for November 14th, 1901. This lady, suffering from cancer of the throat, used an infusion, which was left to stand for twelve hours, of a handful of fresh violet leaves to a pint of

boiling water. After a fortnight of warm fomentations with this liquid the growth was said to have disappeared.

The same newspaper, under date March 18th, 1905, told its readers that violet leaves as a cure for cancer were advocated in the current issue of the Lancet, where a remarkable case was reported by Dr. William Gordon, M.D. Such accounts as these, although interesting, should be read with considerable reserve.... violet

Indian Beech

Pongamia pinnata

Papilionaceae

San: Karanj;

Hin: Karanja, Dittouri;

Ben: Dehar karanja;

Mal: Ungu, Pongu; Guj, Mar, Pun: Karanj;

Kan: Hongae;

Tel: Kangu;

Tam: Puggam; Ass: Karchaw; Ori: Koranjo

Importance: Indian beech, Pongam oil tree or Hongay oil tree is a handsome flowering tree with drooping branches, having shining green leaves laden with lilac or pinkish white flowers. The whole plant and the seed oil are used in ayurvedic formulations as effective remedy for all skin diseases like scabies, eczema, leprosy and ulcers. The roots are good for cleaning teeth, strengthening gums and in gonorrhoea and scrofulous enlargement. The bark is useful in haemorhoids, beriberi, ophthalmopathy and vaginopathy. Leaves are good for flatulence, dyspepsia, diarrhoea, leprosy, gonorrhoea, cough, rheumatalgia, piles and oedema. Flowers are given in diabetes. Fruits overcomes urinary disease and piles. The seeds are used in inflammations, otalgia, lumbago, pectoral diseases, chronic fevers, hydrocele, haemorrhoids and anaemia. The seed oil is recommended for ophthalmia, haemorrhoids, herpes and lumbagoThe seed oil is also valued for its industrial uses. The seed cake is suggested as a cheap cattle feed. The plant enters into the composition of ayurvedic preparations like nagaradi tailam, varanadi kasayam, varanadi ghrtam and karanjadi churna.

It is a host plant for the lac insect. It is grown as a shade tree. The wood is moderately hard and used as fuel and also for making agricultural implements and cart- wheels.

Distribution: The plant is distributed throughout India from the central or eastern Himalaya to Kanyakumari, especially along the banks of streams and rivers or beach forests and is often grown as an avenue tree. It is distributed in Sri Lanka, Burma, Malaya, Australia and Polynesia.

Botany: Pongamia pinnata (Linn.) Pierre syn. P. glabra Vent., Derris indica (Lam.) Bennet, Cystisus pinnatus Lam. comes under family Papilionaceae. P. pinnata is a moderate sized, semi -evergreen tree growing upto 18m or more high, with a short bole, spreading crown and greyish green or brown bark. Leaves imparipinnate, alternate, leaflets 5-7, ovate and opposite. Flowers lilac or pinkish white and fragrant in axillary recemes. Calyx cup-shaped, shortly 4-5 toothed, corolla papilionaceous. Stamens 10 and monadelphous, ovary subsessile, 2-ovuled with incurved, glabrous style ending in a capitate stigma. Pod compressed, woody, indehiscent, yellowish grey when ripe varying in size and shape, elliptic to obliquely oblong, 4.0-7.5cm long and 1.7-3.2cm broad with a short curved beak. Seeds usually 1, elliptic or reniform, wrinkled with reddish brown, leathery testa.

Agrotechnology: The plant comes up well in tropical areas with warm humid climate and well distributed rainfall. Though it grows in almost all types of soils, silty soils on river banks are most ideal. It is tolerant to drought and salinity. The tree is used for afforestation, especially in watersheds in the drier parts of the country. It is propagated by seeds and vegetatively by rootsuckers. Seed setting is usually in November. Seeds are soaked in water for few hours before sowing. Raised seed beds of convenient size are prepared, well rotten cattle manure is applied at 1kg/m2 and seeds are uniformly broadcasted. The seeds are covered with a thin layer of sand and irrigated. One month old seedlings can be transplanted into polybags, which after one month can be planted in the field. Pits of size 50cm cube are dug at a spacing of 4-5m, filled with top soil and manure and planted. Organic manure are applied annually. Regular weeding and irrigation are required for initial establishment. The trees flower and set fruits in 5 years. The harvest season extends from November- June. Pods are collected and seeds are removed by hand. Seed, leaves, bark and root are used for medicinal purposes. Bark can be collected after 10 years. No serious pests and diseases are reported in this crop.

Properties and activity: The plant is rich in flavonoids and related compounds. Seeds and seed oil, flowers and stem bark yield karanjin, pongapin, pongaglabrone, kanugin, desmethoxykanugin and pinnatin. Seed and its oil also contain kanjone, isolonchocarpin, karanjachromene, isopongachromene, glabrin, glabrachalcone, glabrachromene, isopongaflavone, pongol, 2’- methoxy-furano 2”,3”:7,8 -flavone and phospholipids. Stem-bark gives pongachromene, pongaflavone, tetra-O-methylfisetin, glabra I and II, lanceolatin B, gamatin, 5-methoxy- furano 2”,3”:7,8 -flavone, 5-methoxy-3’,4’-methelenedioxyfurano 2”,3”:7,8 -flavone and - sitosterol. Heartwood yields chromenochalcones and flavones. Flowers are reported to contain kanjone, gamatin, glabra saponin, kaempferol, -sitosterol, quercetin glycocides, pongaglabol, isopongaglabol, 6-methoxy isopongaglabol, lanceolatin B, 5-methoxy-3’,4’- methelenedioxyfurano 8,7:4”,5” -flavone, fisetin tetramethyl ether, isolonchocarpin, ovalichromene B, pongamol, ovalitenon, two triterpenes- cycloart-23-ene,3 ,25 diol and friedelin and a dipeptide aurantinamide acetate.

Roots and leaves give kanugin, desmethoxykanugin and pinnatin. Roots also yield a flavonol methyl ether-tetra-O-methyl fisetin. The leaves contain triterpenoids, glabrachromenes I and II, 3’-methoxypongapin and 4’-methoxyfurano 2”,3”:7,8 -flavone also. The gum reported to yield polysaccharides (Thakur et al, 1989; Husain et al, 1992).

Seeds, seed oil and leaves are carminative, antiseptic, anthelmintic and antirheumatic. Leaves are digestive, laxative, antidiarrhoeal, bechic, antigonorrheic and antileprotic. Seeds are haematinic, bitter and acrid. Seed oil is styptic and depurative. Karanjin is the principle responsible for the curative properties of the oil. Bark is sweet, anthelmintic and elexteric.... indian beech

Liquorice

Glycyrrhiza glabra

Papilionaceae

San: Yashtimadhu Hin: Jathimadh Mal: Irattimadhuram Tam:Athimadhuram

Tel: Yashtimadhukam

Ben: Yashtomadhu Pun:Muleti

Importance: Liquorice or Muleti is a perennial herb or undershrub about 1m high. Its dried peeled or unpeeled underground stems and roots constitute the drug which is an important constituent of all cough and catarrh syrups, throat lozenges and pastilles. This has been used in medicine for more than 4000 years. Hippocrates (400 BC) mentioned its use as a remedy for ulcers and quenching of thirst. Dioscorides, the father of Greek medicine described this drug in detail and considered it useful for maintaining shape of arteries and in burning stomach, trouble of liver and kidney, scabies, healing of wounds and as a remedy for eye diseases. It has been used in Arab system of medicine for more than 600 years from where it has been adopted to modern medicine (Gibson, 1978).

The commercial name of the dried rhizome and root of the plant is liquorice which is used as flavouring agent and the taste coorigent in pharmaceutical and confectionery industries and its products are widely reported to be useful in ulcer therapy. Glycyrrhizin, a triterpene glucoside, is the principal constituent of G. glabra which is 50 times sweeter than sugar.

Distribution: Liquorice is native to Mediterranean region, South Europe and Middle East. It is widely distributed in Spain, Italy, Greece, Syria, Iraq, Afghanistan, Turkey, parts of USSR and China. However its cultivation is limited to small areas in USSR, UK, and USA. In India, it grows in Punjab and Jammu and Kashmir. Semi arid areas of Haryana, Rajasthan and Gujarath states are suitable for the cultivation of Liquorice. However, its commercial cultivation has not yet been possible and the domestic requirement is largely met through imports.

Botany: Glycyrrhiza glabra Linn. belongs to the family Papilionaceae. The word Glycyrrhiza is of Greek origin meaning ‘sweet’ and glabra means ‘smooth’ which refers to smooth fruit of the species. This is a tall perennial, self pollinated herb or undershrub about 1m high with long cylindrical burrowing rootstock and horizontal creeping stolons which reach 1.5-1.8m in length. Leaves are alternate, pinnate with 9-17 leaflets. Leaflets are yellowish-green, 2.5-5cm long, ovate and obtuse. Flowers are pale blue arranged in a raceme and 1.25cm long. Calyx is glandular and pubescent. The pods are glabrous, red to brown having 3-4 seeds. Rhizome is soft, flexible and fibrous with light yellow colour and a characteristic sweet taste.

Agrotechnology: This plant thrives well in subtropical areas with very warm summers and cool winters with a rainfall not exceeding 500mm. Semi -arid and arid areas in subtropical zones are not suitable for the cultivation of this crop. It does not tolerate high humidity and waterlogged conditions. Well drained light loam soils which are rich in calcium and magnesium with slightly alkaline pH and free from stones are ideal for this crop. There are a number of varieties of this crop among which Spanish, Russian and Persian liquorice are quite common. Commercial varieties are Typica, Regel and Herd. This is propagated by seed, but usually multiplied vegetatively either through crown cuttings or stolon pieces. In the case of crown cuttings, 10-15cm long crown pieces with 2-3 buds are planted vertically at a distance of 0.6-0.7m in rows 1-1.5m apart. However, most of the liquorice is propagated through stolon pieces of the above size planted horizontally, preferably on ridges during spring at the same distance as above. Rapid clonal propagation is also possible by tissue culture technique. Murashige and Skoog’s medium supplemented with 6-benzylaminopurine and indole-3-acetic acid favoured multiple shoot production without any intervening callus phase. These regenerated plantlets can be transferred to earthen pots in the glass house and after a brief hardening phase, these are transplanted in the field with a high rate (90-95%) of survival. This plant normally does not require much fertilizers but in deficient soils, it is better to apply 10-15 tonnes FYM per hectare before planting. The field should be immediately irrigated after planting in spring and after the crop has sprouted, it requires very little irrigation. Space between the rows should be kept free from weeds. Short term vegetables like carrot or cabbage can be planted between the rows for additional income. In order to produce good rhizome, flowering shoots are clipped. No serious disease except leaf spot caused by Cercospora cavarae has been reported in this crop. Roots are ready for harvesting after 3-4 years. The root is dug when the top has dried during autumn (November- December). A trench 60cm deep is dug along the ridges and the entire root is lifted. Broken parts of the root left in the soil, sprout again and give another crop after 2-3 years. Thus liquorice once planted properly can be harvested for 10-15 years.

Postharvest technology: Harvested roots are cut into pieces of 15-20cm long and 1-2cm in diameter. They are washed and dried upto 6-8% moisture in the sun and shade alternately which reduces the weight by 50%. The average yield of dried roots varies from 1-3 tonnes per hectare depending on the variety, soil and climatic conditions.

Properties and activity: Roots gave a number of compounds the most important bieng a glucoside, glycyrrhizin which gave glycyrrhetinic acid on enzyme hydrolysis. Root also contains flavans, flavones, iso-flavanoes and coumarins including a 4-methyl coumarin, liqcoumarin, glabridin, glabrene, 4’-0-methyl and 3’-methoxyglabridin, formononetin, salicylic acid, 0-acetyl salicylic acid which has been isolated first time from nature, hispaglabridins A and B and 4’0- methylglabridin.On hydrolysis it also gave two molecules of d-glucuronic acid, each linked with 1-2 linkage to 3-hydroxyl of the sapogenin (Elgamal et al, 1969) Glycyrrhizin is antidiuretic, antiinflammatory, expectorant, antiulcerous, antihistamine. Glycyrrhizic acid is antiviral. The roots are emetic, tonic, diuretic, demulcent, mild laxative, aphrodisiac, trichogenous, expectorant, emmenagogue, alexipharmic, alterant and intellect promoting.... liquorice

Mesua

Mesua nagassarium

Clusiaceae

San: Nagapuspah, Nagakesarah;

Hin: Nagakesar;

Ben: Nagkesar, Nagesar;

Mal: Nagappuvu,

Nagachempakam, Nanku, Vayanavu, Churuli, Eliponku;

Tam: Nagappu, Nanku;

Kan: Nagasampige;

Tel: Nagakesaramu, Gajapuspam; Mar,

Guj: Nagchampa

Importance: Mesua or Ironwood tree, commonly known as Nagapushpam is an important medicinal plant which finds varied uses in Ayurveda, Siddha and Unani. Leaves are used in the form of poultice which is applied to head in severe colds. Bark and roots in decoction or infusion or tincture is a better tonic and are useful in gastritis and bronchitis. Fixed oil expressed from seeds is used as an application for cutaneous affections, sores, scabies, wounds, etc. and as an embrocation in rheumatism. Dried flowers powdered and mixed with ghee, or a paste made of flowers with addition of butter and sugar, are given in bleeding piles as well as dysentery with mucus. They are also useful in thirst, irritability of the stomach, excessive perspiration, cough with much expectoration, dyspepsia, etc. Leaves and flowers are used in scorpion stings. Syrup of the flower buds is given for the cure of dysentery (Nadkarni et al, 1976). In Ayurveda, it is an ingredient of “Nagakeshara-adi-Churna”, used for bacillary dysentery and in “Naga Keshara Yoga”, for piles. In Unani system, the drug is an ingredient of large number of recipes like, “Jawarish Shehryaran” a stomach and liver tonic, “Hab Pachaluna”, an appetiser, “Halwa-i-supari pack” a general tonic, etc. (Thakur et al, 1989).

Distribution: The plant occurs in sub-tropical to tropical areas of East India, Andaman Islands and Western Ghats, upto an altitude of 1500m.

Botany: Mesua nagassarium (Burm.f.) Kosterm. syn. M. ferrea auct. non Linn. belongs to the family Clusiaceae. It is a medium sized to large evergreen tree, 18-30m in height and with reddish brown bark which peels off in thin flakes. Leaves are simple, opposite, thick, lanceolate, coriaceous, covered with waxy bloom underneath, and red when young, acute or acuminate and with inconspicuous nerves. Flowers are white, very fragrant, axillary or terminal, solitary or in pairs. Stamens are numerous, golden yellow, much shorter than the petals. Fruits are ovoid with a conical point surrounded by the enlarged sepals. Seeds are 1-4 in number, angular, dark brown and smooth (Warrier et al, 1995).

The flowers of Ochrocarpus longifolius are also sometimes referred to as Nagakesara. This tree is found in the West Coast of India (Thakur et al, 1989).

Agrotechnology: The plant prefers plains, riverbanks or places which do not experiences moisture stress for its luxuriant growth. Silty loam soil is suitable for its cultivation. The plant is propagated by seeds. Seed formation occurs in November-March. Seeds are to be collected and sown in seedbeds or polybags. 3-4 months old seedlings are used for transplanting. Pits of size 45cm cube are to be taken at a distance of 3-3.5m and filled with a mixture of 10kg FYM, sand and top soil and made into a mound. Seedlings are to be transplanted into small handpits taken on these mounds. FYM is to be applied twice a year. Regular irrigation and weeding are to be done. The tree flowers in the fourth year. Flowers can be collected, dried in the sun and marketed (Prasad et al,1997).

Properties and activity: Seed oil gives 4-phenyl coumarin analogues-mesuol, mammeigin, mesuagin, mammeisin and mesuone. Bark gives ferruols A and B. Heartwood gives xanthones- euxanthone, mesuaxanthones A and B and a tetroxygenated xanthone named ferraxanthone. Stamens give and -amyrin, -sitosterol, biflavonoids- mesuaferrones A and B, and mesuanic acid. Bark yields a lupeol-type triterpenoid also named guttiferol. Seed oil is rich in oleic, stearic and palmitic acids. Linoleic, arachidic and linolenic acids are also present.

Mesuaxanthones A and B and euxanthone are antiinflammatory, CNS depressant and antimicrobial. The essential oil from the stamens is antibacterial, antifungal, anthelmintic and that from fruit is antifungal. Oral administration of a compound preparation containing Mesua ferrea (flowers), Foeniculum vulgare (seeds), Curcuma zeodaria (tubers), Nigella sativa (seeds), Terminalia chebula (seeds) and T. arjuna (stem-bark) exhibited antiimplantation activity in rats. An Ayurvedic preparations containing M. ferrea has haemostatic and astringent properties and is particularly useful in uterine bleeding. Aerial part is CVS active, spasmolytic and diuretic. Phenol containing fraction of seed oil is antiasthmatic and antianaphylaxis. Bark is used as tonic after childbirth. Bark and unripe fruit is sudorific. Leaf and flower is an antidote for snakebite and scorpion sting. Flower bud is antidysenteric. Flower is stomachic and expectorant. Seed oil is antirheumatic. Unripe fruit and flower is astringent (Husain et al,1992).... mesua

Serpentwood

Rauvolfia serpentina

Apocynaceae

San: Sarpagandha

Hin: Chandrabhaga

Mal: Sarpagandhi, Amalpori

Tam: Chivan amelpodi

Kan: Sutranbhi

Tel: Patalagandhi

Introduction: Serpentwood is an erect, evergreen , perennial undershrub whose medicinal use has been known since 3000 years. Its dried root is the economical part which contains a number of alkaloids of which reserpine, rescinnamine, deserpidine, ajamalacine, ajmaline, neoajmalin, serpentine, -yohimbine are pharmacologically important. The root is a sedative and is used to control high blood pressure and certain forms of insanity. In Ayurveda it is also used for the treatment of insomnia, epilepsy, asthma, acute stomach ache and painful delivery. It is used in snake-bite, insect stings, and mental disorders. It is popular as “Madman’s medicine” among tribals. ‘Serpumsil’ tablet for high blood pressure is prepared from Rauvolfia roots. Reserpine is a potent hypotensive and tranquillizer but its prolonged usage stimulates prolactine release and causes breast cancer. The juice of the leaves is used as a remedy for the removal of opacities of the cornea.

Distribution: Rauvolfia serpentina is native to India. Several species of Rauvolfia are observed growing under varying edaphoclimatic conditions in the humid tropics of India, Nepal, Burma, Thailand, Bangladesh, Indonesia , Cambodia, Philippines and Sri Lanka. In India, it is cultivated in the states of Uttar Pradesh, Bihar, Tamil Nadu, Orissa, Kerala, Assam, West Bengal and Madhya Pradesh (Dutta and Virmani, 1964). Thailand is the chief exporter of Rauvolfia alkaloids followed by Zaire, Bangladesh, Sri Lanka, Indonesia and Nepal. In India, it has become an endangered species and hence the Government has prohibited the exploitation of wild growing plants in forest and its export since 1969.

Botany: Plumier in 1703 assigned the name Rauvolfia to the genus in honour of a German physcian -Leonhart Rauvolf of Augsburg. The genus Rauvolfia of Apocynaceae family comprises over 170 species distributed in the tropical and subtropical parts of the world including 5 species native to India. The common species of the genus Rauvolfia and their habitat as reported by Trivedi (1995) are given below.

R. serpentina Benth. ex Kurz.(Indian serpentwood) - India ,Bangladesh, Burma, Sri Lanka, Malaya, Indonesia

R. vomitoria Afz. (African serpentwood) - West Africa, Zaire, Rwanda, Tanzania R. canescens Linn. syn. R. tetraphylla (American serpentwood) - America, India R. mombasina - East Africa , Kenya, Mozambique

R. beddomei - Western ghats and hilly tracts of Kerala

R. densiflora - Maymyo, India

R. microcarpa - Thandaung

R. verticillata syn. R. chinensis - Hemsl

R. peguana - Rangoon-Burma hills

R. caffra - Nigeria, Zaire, South Africa

R. riularis - Nmai valley

R. obscura - Nigeria, Zaire

R. serpentina is an erect perennial shrub generally 15-45 cm high, but growing upto 90cm under cultivation. Roots nearly verticle, tapering up to 15 cm thick at the crown and long giving a serpent-like appearance, occasionally branched or tortuous developing small fibrous roots. Roots greenish-yellow externally and pale yellow inside, extremely bitter in taste. Leaves born in whorls of 3-4 elliptic-lanceolate or obovate, pointed. Flowers numerous borne on terminal or axillary cymose inflorscence. Corolla tubular, 5-lobed, 1-3 cm long, whitish-pink in colour. Stamens 5, epipetalous. Carpels 2, connate, style filiform with large bifid stigma. Fruit is a drupe, obliquely ovoid and purplish black in colour at maturity with stone containing 1-2 ovoid wrinkled seeds. The plant is cross-pollinated, mainly due to the protogynous flowers (Sulochana ,1959).

Agrotechnology: Among the different species of Rauvolfia, R. serpentina is preferred for cultivation because of higher reserpine content in the root. Though it grows in tropical and subtropical areas which are free from frost, tropical humid climate is most ideal. Its common habitats receive an annual rain fall of 1500-3500 mm and the annual mean temperature is 10-38 C. It grows up to an elevation of 1300-1400m from msl. It can be grown in open as well as under partial shade conditions. It grows on a wide range of soils. Medium to deep well drained fertile soils and clay-loam to silt-loam soils rich in organic matter are suitable for its cultivation. It requires slightly acidic to neutral soils for good growth.

The plant can be propagated vegetatively by root cuttings, stem cuttings or root stumps and by seeds. Seed propagation is the best method for raising commercial plantation. Seed germination is very poor and variable from 10-74%. Seeds collected during September to November give good results. It is desirable to use fresh seeds and to sock in 10% sodium chloride solution. Those seeds which sink to the bottom should only be used. Seeds are treated with ceresan or captan before planting in nursery to avoid damping off. Seed rate is 5-6 kg/ha. Nursery beds are prepared in shade, well rotten FYM is applied at 1kg/m2 and seeds are dibbled 6-7cm apart in May-June and irrigated.

Two months old seedlings with 4-6 leaves are transplanted at 45-60 x 30 cm spacing in July -August in the main field. Alternatively, rooted cuttings of 2.5-5cm long roots or 12-20cm long woody stems can also be used for transplanting. Hormone (Seradix) treatment increases rooting. In the main field 10-15 t/ha of FYM is applied basally. Fertilisers are applied at 40:30:30kg N: P2O5 :K2O/ha every year. N is applied in 2-3 splits. Monthly irrigation increases the yield. The nursery and the main field should be kept weed free by frequent weeding and hoeing. In certain regions intercroping of soybean, brinjal, cabbage, okra or chilly is followed in Rauvolfia crop.

Pests like root grubs (Anomala polita), moth (Deilephila nerii), caterpillar (Glyophodes vertumnalis), black bugs and weevils are observed on the crop, but the crop damage is not serious. The common diseases reported are leaf spot (Cercospora rauvolfiae, Corynespora cassiicola), leaf blotch (Cercospora serpentina), leaf blight (Alternaria tenuis), anthracnose (Colletotrichum gloeosporioides), die back (Colletotrichum dematrium), powdery mildew (Leviellula taurica), wilt (Fusarium oxysporum), root-knot (Meloidogyne sp.), mosaic and bunchy top virus diseases. Field sanitation, pruning and burning of diseased parts and repeated spraying of 0.2% Dithane Z-78 or Dithane M-45 are recommended for controlling various fungal diseases. Rauvolfia is harvested after 2-3 years of growth. The optimum time of harvest is in November -December when the plants shed leaves, become dormant and the roots contain maximum alkaloid content. Harvesting is done by digging up the roots by deeply penetrating implements (Guniyal et al, 1988).

Postharvest technology: The roots are cleaned washed cut into 12-15cm pieces and dried to 8-10% moisture.

The dried roots are stored in polythene lined gunny bags in cool dry place to protect it from mould. The yield is 1.5-2.5 t/ha of dry roots. The root bark constitutes 40-45% of the total weight of root and contributes 90% of the total alkaloids yield.

Properties and activity: Rauvolfia root is bitter, acrid, laxative, anthelmintic, thermogenic, diuretic and sedative. Over 200 alkaloids have been isolated from the plant. Rauvolfia serpentina root contains 1.4-3% alkaloids. The alkaloids are classsified into 3 groups, viz, reserpine, ajmaline and serpentine groups. Reserpine group comprising reserpine, rescinnamine, deserpine etc act as hypotensive, sedative and tranquillising agent. Overdose may cause diarrhoea, bradycardia and drowsiness. Ajmaline, ajmalicine, ajmalinine, iso-ajmaline etc of the ajmaline group stimulate central nervous system, respiration and intestinal movement with slight hypotensive activity. Serpentine group comprising serpentine, sepentinine, alstonine etc is mostly antihypertensive. (Husain,1993; Trivedi, 1995; Iyengar, 1985).... serpentwood

Vocanga Foetida

(Blume) Rolfe.

Synonym: Orchipeda foetida Blume.

Family: Apocynaceae.

Habitat: Indonesia; cultivated in Indian gardens.

Action: Latex—used for treating fistula, pustules and tumours.

The bark contains a bitter alkaloid (yield 0.25%).

A related species, V. grandifolia (Miq.) Rolfe has been introduced into the Indian Botanic Garden, Kolkata. All parts of the plant contain alkaloids which vary seasonally. The trunk bark contains as high as 2.72% of alkaloids on dry basis in November. The leaves contain a mixture of alkaloids (yield up to 1.23% on dry weight basis) containing vobtusine, vobtusine lactone and deoxyvobtusine.... vocanga foetida

West Indian

MEDLAR

Mimusops elengi

Sapotaceae

San: Bakulah

Hin: Bakul, Maulsiri

Ben: Bakul

Mal: Ilanji, Elanji

Tam: Magilam, Ilanci

Tel: Pogada

Kan: Pagademara Guj:

Barsoli, Bolsari

Importance: Spanish cherry, West Indian Medlar or Bullet wood tree is an evergreen tree with sweet- scented flowers having ancient glamour. Garlands made of its flowers are ever in good demand due to its long lasting scent. Its bark is used as a gargle for odontopathy, ulitis and ulemorrhagia. Tender stems are used as tooth brushes. It is also useful in urethrorrhoea, cystorrhoea, diarrhoea and dysentery. Flowers are used for preparing a lotion for wounds and ulcers. Powder of dried flowers is a brain tonic and is useful as a snuff to relieve cephalgia. Unripe fruit is used as a masticatory and will help to fix loose teeth. Seeds are used for preparing suppositories in cases of constipation especially in children (Warrier et al,1995). The bark and seed coat are used for strengthening the gum and enter into the composition of various herbal tooth powders, under the name of “Vajradanti”, where they may be used along with tannin-containing substances like catechu (Acacia catechu), pomegranate (Punica granatum) bark, etc. The bark is used as snuff for high fever accompanied by pains in various parts of the body. The flowers are considered expectorant and smoked in asthma. A lotion prepared from unripe fruits and flowers is used for smearing on sores and wounds. In Ayurveda, the important preparation of Mimusops is “Bakuladya Taila”, applied on gum and teeth for strengthening them, whereas in Unani system, the bark is used for the diseases of genitourinary system of males (Thakur et al, 1989).

Distribution: It is cultivated in North and Peninsular India and Andaman Islands. It is grown as an avenue tree in many parts of India.

Botany: Mimusops elengi Linn. belongs to the family Sapotaceae. It is an evergreen tree with dark grey fissured bark and densely spreading crown. Leaves are oblong, glabrous and leathery with wavy margins. Flowers are white, fragrant, axillary, solitary or fascicled. Fruits are ovoid or ellipsoid berries. Seeds are 1-2 per fruit, ovoid, compressed, greyish brown and shiny (Warrier et al, 1995). Other important species belonging to the genus Mimusops are M. hexandra Roxb. and M. kauki Linn. syn. Manilkara kauki Dub.(Chopra et al, 1980).

Agrotechnology: Mimusops prefers moist soil rich in organic matter for good growth. The plant is propagated by seeds. Fruits are formed in October-November. Seeds are to be collected and dried. Seeds are to be soaked in water for 12 hours without much delay and sown on seedbeds. Viability of seeds is less. After germination they are to be transferred to polybags. Pits of size 45cm cube are to be taken and filled with 5kg dried cowdung and top soil. To these pits, about 4 months old seedlings from the polybags are to be transplanted with the onset of monsoon. Addition of 10kg FYM every year is beneficial. Any serious pests or diseases do not attack the plant. Flowering commences from fourth year onwards. Bark, flowers, fruit and seeds are the economic parts.

Properties and activity: -sitosterol and its glucoside, -spina-sterol, quercitol, taraxerol and lupeol and its acetate are present in the aerial parts as well as the roots and seeds. The aerial parts in addition gave quercetin, dihydroquercetin, myricetin, glycosides, hederagenin, ursolic acid, hentriacontane and -carotene. The bark contained an alkaloid consisting largely of a tiglate ester of a base with a mass spectrum identical to those of laburinine and iso-retronecanol and a saponin also which on hydrolysis gave -amyrin and brassic acid. Seed oil was comprised of capric, lauric, myristic, palmitic, stearic, arachidic, oleic and linoleic acids.

Saponins from seed are spermicidal and spasmolytic. The aerial part is diuretic. Extract of flower (1mg/kg body weight) showed positive diuretic action in dogs. Bark is tonic and febrifuge. Leaf is an antidote for snakebite. Pulp of ripe fruit is antidysenteric. Seed is purgative. Bark and pulp of ripe fruit is astringent (Husain et al, 1992).... west indian

West Indian Medlar

Mimusops elengi

Sapotaceae

San: Bakulah

Hin: Bakul, Maulsiri

Ben: Bakul

Mal: Ilanji, Elanji

Tam: Magilam, Ilanci

Tel: Pogada

Kan: Pagademara

Guj: Barsoli, Bolsari

Importance: Spanish cherry, West Indian Medlar or Bullet wood tree is an evergreen tree with sweet- scented flowers having ancient glamour. Garlands made of its flowers are ever in good demand due to its long lasting scent. Its bark is used as a gargle for odontopathy, ulitis and ulemorrhagia. Tender stems are used as tooth brushes. It is also useful in urethrorrhoea, cystorrhoea, diarrhoea and dysentery. Flowers are used for preparing a lotion for wounds and ulcers. Powder of dried flowers is a brain tonic and is useful as a snuff to relieve cephalgia. Unripe fruit is used as a masticatory and will help to fix loose teeth. Seeds are used for preparing suppositories in cases of constipation especially in children (Warrier et al,1995). The bark and seed coat are used for strengthening the gum and enter into the composition of various herbal tooth powders, under the name of “Vajradanti”, where they may be used along with tannin-containing substances like catechu (Acacia catechu), pomegranate (Punica granatum) bark, etc. The bark is used as snuff for high fever accompanied by pains in various parts of the body. The flowers are considered expectorant and smoked in asthma. A lotion prepared from unripe fruits and flowers is used for smearing on sores and wounds. In Ayurveda, the important preparation of Mimusops is “Bakuladya Taila”, applied on gum and teeth for strengthening them, whereas in Unani system, the bark is used for the diseases of genitourinary system of males (Thakur et al, 1989).

Distribution: It is cultivated in North and Peninsular India and Andaman Islands. It is grown as an avenue tree in many parts of India.

Botany: Mimusops elengi Linn. belongs to the family Sapotaceae. It is an evergreen tree with dark grey fissured bark and densely spreading crown. Leaves are oblong, glabrous and leathery with wavy margins. Flowers are white, fragrant, axillary, solitary or fascicled. Fruits are ovoid or ellipsoid berries. Seeds are 1-2 per fruit, ovoid, compressed, greyish brown and shiny (Warrier et al, 1995). Other important species belonging to the genus Mimusops are M. hexandra Roxb. and M. kauki Linn. syn. Manilkara kauki Dub.(Chopra et al, 1980).

Agrotechnology: Mimusops prefers moist soil rich in organic matter for good growth. The plant is propagated by seeds. Fruits are formed in October-November. Seeds are to be collected and dried. Seeds are to be soaked in water for 12 hours without much delay and sown on seedbeds. Viability of seeds is less. After germination they are to be transferred to polybags. Pits of size 45cm cube are to be taken and filled with 5kg dried cowdung and top soil. To these pits, about 4 months old seedlings from the polybags are to be transplanted with the onset of monsoon. Addition of 10kg FYM every year is beneficial. Any serious pests or diseases do not attack the plant. Flowering commences from fourth year onwards. Bark, flowers, fruit and seeds are the economic parts.

Properties and activity: -sitosterol and its glucoside, -spina-sterol, quercitol, taraxerol and lupeol and its acetate are present in the aerial parts as well as the roots and seeds. The aerial parts in addition gave quercetin, dihydroquercetin, myricetin, glycosides, hederagenin, ursolic acid, hentriacontane and -carotene. The bark contained an alkaloid consisting largely of a tiglate ester of a base with a mass spectrum identical to those of laburinine and iso-retronecanol and a saponin also which on hydrolysis gave -amyrin and brassic acid. Seed oil was comprised of capric, lauric, myristic, palmitic, stearic, arachidic, oleic and linoleic acids.

Saponins from seed are spermicidal and spasmolytic. The aerial part is diuretic. Extract of flower (1mg/kg body weight) showed positive diuretic action in dogs. Bark is tonic and febrifuge. Leaf is an antidote for snakebite. Pulp of ripe fruit is antidysenteric. Seed is purgative. Bark and pulp of ripe fruit is astringent (Husain et al, 1992).... west indian medlar

Sarcostyle

n. a bundle of muscle fibrils.

SARS (severe acute respiratory syndrome) an *atypical pneumonia caused by a virus, SARS coronavirus (SARS CoV), and spread by close contact with an infected person, that first appeared in November 2002 in Guangdong province, China. Over the next few months it spread to many countries in Asia, Europe, and North and South America before being contained (the last case in this outbreak occurred in June 2003). According to the World Health Organization (WHO), a total of 8098 people worldwide contracted SARS during the 2003 outbreak; 774 of these died. Over the next two years the number of cases declined until the disease itself was declared eradicated by the WHO (in May 2005).... sarcostyle

Meningitis

Cerebrospinal fever. Inflammation of the pia mater and arachnoid covering of the brain and spinal cord. A notifiable disease. Hospitalisation. Diagnosis is difficult without a lumbar puncture. Caused by a wide range of virus, bacteria, protozoa and fungi. Three most common bacterial causes in England and Wales are N. Meningotidis, H. influenzae and streptococcus-like infection with sore throat; then fever, vomiting, headache and mental confusion; half-open eyes when asleep, delirium, sensitive to light, possibly drifting into coma. Sometimes onset is gradual over 2-3 weeks. Treatment by hospital specialist.

Poor housing and passive smoking suspected. Its association with non-germ meningitis, and inflammatory drugs is well recognised. Also caused by injury or concussion.

Commence by cleansing bowel with Chamomile enema.

Cerebrospinal relaxants indicated: Passion flower (cerebral), Black Cohosh (meningeal), Ladyslipper (spinal meningeal). (A.W. & L.R. Priest)

If patient is cold, give Cayenne pepper in honey to promote brisk circulation.

Aconite and Gelsemium. “For irritation of the meninges of the brain and spinal cord Aconite is indispensible. Combined with Gelsemium for restlessness it is an exceptional remedy. Tincture Aconite (5-15 drops) with Gelsemium (3-10 drops) hourly. Also used in combination with other agents as may be dictated by the course of the disease. (W.W. Martin MD., Kirksville, Mo., USA)

Crawley root. Decoction: 1 teaspoon to half a pint water, simmer 20 minutes. Dose: 1 teaspoon or more 3-4 times daily for children over 6 months. A powerful diaphoretic and sedative. (Dr Baker, Adrian, Michigan, USA)

Lobelia and Echinacea. Equal parts, Liquid Extract 30 drops in water every 3 hours. (Dr Finlay Ellingwood)

Lobelia, alone. Hypodermic injections of Lobelia in five cases of epidemic spinal meningitis, with complete recovery in every case. Dose: 10 drops hourly until symptoms abate, then twice daily. (Dr A.E. Collyer, Ellingwood Therapeutist)

Ecclectic School. Echinacea commended.

Before the Doctor comes. As onset is rapid, often less than 5 hours, an anti-inflammatory is justified. Teas or decoctions from any of the following: Catmint (Catnep), Prickly Ash berries, Pleurisy root, Boneset, Wild Cherry bark, Bugleweed (Virginian), Ladyslipper. When temperature abates and patient feels better: Chamomile tea or cold Gentian decoction with pinch Cayenne.

Hydrotherapy. Hot baths make patient feel worse. Sponge down with cold water.

Protective throat spray: equal parts, Tincture Myrrh and Tincture Goldenseal.

Protective gargle: 10-20 drops Tincture Myrrh and Goldenseal to glass of water.

Garlic. Dr Yan Cai, Department of Neurology, Ren Ji Hospital (affiliated to Shanghai Second Medical University), China, referred to the extensive use of Garlic in Chinese folk medicine and his hospital’s experience with Garlic products – diallyl trisulphide in particular – to treat viral infections including crypotococcal meningitis for which disease results were impressive.

Garlic appears to be a reliable preventative.

Diet. Fast as long as temperature is elevated; with fruit juices, red beet juice, carrot juice or herb teas. Note. GPs and other practitioners may help stop meningitis claiming lives by giving massive doses of Echinacea before they are admitted to hospital.

Note: The infection is often difficult to diagnose. At the end of each year (November and December) when the peak in cases approaches, every feverish patient with headache should be suspected, especially where accompanied by stiff neck.

The above entry is of historic interest only; more effective orthodox treatment being available. ... meningitis




Recent Searches