Nutritional Profile Energy value (calories per serving): Moderate Protein: Low (cocoa powder) High (chocolate) Fat: Moderate Saturated fat: High Cholesterol: None Carbohydrates: Low (chocolate) High (cocoa powder) Fiber: Moderate (chocolate) High (cocoa powder) Sodium: Moderate Major vitamin contribution: B vitamins Major mineral contribution: Calcium, iron, copper
About the Nutrients in This Food Cocoa beans are high-carbohydrate, high-protein food, with less dietary fiber and more fat than all other beans, excepting soy beans. The cocoa bean’s dietary fiber includes pectins and gums. Its proteins are limited in the essential amino acids lysine and isoleucine. Cocoa butter, the fat in cocoa beans, is the second most highly saturated vegetable fat (coconut oil is number one), but it has two redeeming nutritional qualities. First, it rarely turns rancid. Second, it melts at 95°F, the temperature of the human tongue. Cocoa butter has no cholesterol; neither does plain cocoa powder or plain dark chocolate. Cocoa beans have B vitamins (thiamine, riboflavin, niacin) plus min- erals (iron, magnesium, potassium, phosphorus, and copper). All chocolate candy is made from chocolate liquor, a thick paste pro- duce by roasting and grinding cocoa beans. Dark (sweet) chocolate is made of chocolate liquor, cocoa butter, and sugar. Milk chocolate is made of choc- olate liquor, cocoa butter, sugar, milk or milk powder, and vanilla. White * These values apply to plain cocoa powder and plain unsweetened chocolate. Add- ing other foods, such as milk or sugar, changes these values. For example, there is no cholesterol in plain bitter chocolate, but there is cholesterol in milk chocolate. chocolate is made of cocoa butter, sugar, and milk powder. Baking chocolate is unsweetened dark chocolate. The most prominent nutrient in chocolate is its fat. Fat Content in One Ounce of Chocolate
Saturated fat (g) | Monounsaturated fat (g) | Polyunsaturated fat (g) | Cholesterol (mg) | |
Dark (sweet) | ||||
chocolate | 5.6 | 3.2 | 0.3 | 0 |
Milk chocolate | 5.9 | 4.5 | 0.4 | 6.6 |
Baking chocolate | 9 | 5.6 | 0.3 | 0 |
White chocolate | 5.5 | 2.6 | 0.3 | 0 |
The Most Nutritious Way to Serve This Food With low-fat milk to complete the proteins without adding saturated fat and cholesterol. NOTE : Both cocoa and chocolate contain oxalic acid, which binds with calcium to form cal- cium oxalate, an insoluble compound, but milk has so much calcium that the small amount bound to cocoa and chocolate hardly matters. Chocolate skim milk is a source of calcium.
Diets That May Restrict or Exclude This Food Antiflatulence diet Low-calcium and low-oxalate diet (to prevent the formation of calcium oxalate kidney stones) Low-calorie diet Low-carbohydrate diet Low-fat diet Low-fat, controlled-cholesterol diet (milk chocolates) Low-fiber diet Potassium-regulated (low-potassium) diet
Buying This Food Look for: Tightly sealed boxes or bars. When you open a box of chocolates or unwrap a candy bar, the chocolate should be glossy and shiny. Chocolate that looks dull may be stale, or it may be inexpensively made candy without enough cocoa butter to make it gleam and give it the rich creamy mouthfeel we associate with the best chocolate. (Fine chocolate melts evenly on the tongue.) Chocolate should also smell fresh, not dry and powdery, and when you break a bar or piece of chocolate it should break cleanly, not crumble. One exception: If you have stored a bar of chocolate in the refrigerator, it may splinter if you break it without bringing it to room temperature first.
Storing This Food Store chocolate at a constant temperature, preferably below 78°F. At higher temperatures, the fat in the chocolate will rise to the surface and, when the chocolate is cooled, the fat will solidif y into a whitish powdery bloom. Bloom is unsightly but doesn’t change the chocolate’s taste or nutritional value. To get rid of bloom, melt the chocolate. The chocolate will turn dark, rich brown again when its fat recombines with the other ingredients. Chocolate with bloom makes a perfectly satisfactory chocolate sauce. Dark chocolate (bitter chocolate, semisweet chocolate) ages for at least six months after it is made, as its flavor becomes deeper and more intense. Wrapped tightly and stored in a cool, dry cabinet, it can stay fresh for a year or more. Milk chocolate ages only for about a month after it is made and holds its peak flavor for about three to six months, depending on how carefully it is stored. Plain cocoa, with no added milk powder or sugar, will stay fresh for up to a year if you keep it tightly sealed and cool.
What Happens When You Cook This Food Chocolate burns easily. To melt it without mishap, stir the chocolate in a bowl over a pot of hot water or in the top of a double boiler or put the chocolate in a covered dish and melt it in the microwave (which does not get as hot as a pot on the store). Simple chemistry dictates that chocolate cakes be leavened with baking soda rather than baking powder. Chocolate is so acidic that it will upset the delicate balance of acid (cream of tartar) and base (alkali = sodium bicarbonate = baking soda) in baking powder. But it is not acidic enough to balance plain sodium bicarbonate. That’s why we add an acidic sour-milk product such as buttermilk or sour cream or yogurt to a chocolate cake. Without the sour milk, the batter would be so basic that the chocolate would look red, not brown, and taste very bitter.
How Other Kinds of Processing Affect This Food Freezing. Chocolate freezes and thaws well. Pack it in a moistureproof container and defrost it in the same package to let it reabsorb moisture it gave off while frozen.
Medical Uses and/or Benefits Mood elevator. Chocolate’s reputation for making people feel good is based not only on its caffeine content—19 mg caffeine per ounce of dark (sweet) chocolate, which is one-third the amount of caffeine in a five-ounce cup of brewed coffee—but also on its naturally occurring mood altering chemicals phenylethylalanine and anandamide. Phenylethylalanine is found in the blood of people in love. Anandamide stimulates areas of your brain also affected by the active ingredients in marijuana. (NOTE : As noted by the researchers at the Neurosci- ences Institute in San Diego who identified anandamide in chocolate in 1996, to get even the faintest hint of marijuana-like effects from chocolate you would have to eat more than 25 pounds of the candy all at once.) Possible heart health benefits. Chocolate is rich in catechins, the antioxidant chemicals that give tea its reputation as a heart-protective anticancer beverage (see tea). In addition, a series of studies beginning with those at the USDA Agricultural Research Center in Peoria, Illinois, suggest that consuming foods rich in stearic acid like chocolate may reduce rather than raise the risk of a blood clot leading to a heart attack. Possible slowing of the aging process. Chocolate is a relatively good source of copper, a mineral that may play a role in slowing the aging process by decreasing the incidence of “protein glycation,” a reaction in which sugar molecules ( gly = sugar) hook up with protein molecules in the bloodstream, twisting the protein molecules out of shape and rendering them unusable. This can lead to bone loss, rising cholesterol, cardiac abnormalities, and a slew of other unpleasantries. In people with diabetes, excess protein glycation may be one factor involved in complications such as loss of vision. Ordinarily, increased protein glyca- tion is age-related. But at the USDA Grand Forks Human Nutrition Research Center in North Dakota, agricultural research scientist Jack T. Saari has found that rats on copper-deficient diets experience more protein glycation at any age than other rats. A recent USDA survey of American eating patterns says that most of us get about 1.2 mg copper a day, considerably less than the Estimated Safe and Adequate Daily Dietary Intake (ESADDI) or 1.5 mg to 3 mg a day. Vegetarians are less likely to be copper deficient because, as Saari notes, the foods highest in copper are whole grains, nuts, seeds, and beans, including the cocoa bean. One ounce of dark chocolate has .25 mg copper (8 –17 percent of the ESADDI).
Adverse Effects Associated with This Food Possible loss of bone density. In 2008, a team of Australian researchers at Royal Perth Hos- pital, and Sir Charles Gairdner Hospital published a report in the American Journal of Clinical Nutrition suggesting that women who consume chocolate daily had 3.1 percent lower bone density than women who consume chocolate no more than once a week. No explanation for the reaction was proposed; the finding remains to be confirmed. Possible increase in the risk of heart disease. Cocoa beans, cocoa powder, and plain dark chocolate are high in saturated fats. Milk chocolate is high in saturated fats and cholesterol. Eating foods high in saturated fats and cholesterol increases the amount of cholesterol in your blood and raises your risk of heart disease. NOTE : Plain cocoa powder and plain dark chocolate may be exceptions to this rule. In studies at the USDA Agricultural Research Center in Peoria, Illinois, volunteers who consumed foods high in stearic acid, the saturated fat in cocoa beans, cocoa powder, and chocolate, had a lower risk of blood clots. In addition, chocolate is high in flavonoids, the antioxidant chemicals that give red wine its heart-healthy reputation. Mild jitters. There is less caffeine in chocolate than in an equal size serving of coffee: A five- ounce cup of drip-brewed coffee has 110 to 150 mg caffeine; a five-ounce cup of cocoa made with a tablespoon of plain cocoa powder ( 1/3 oz.) has about 18 mg caffeine. Nonetheless, people who are very sensitive to caffeine may find even these small amounts problematic. Allergic reaction. According to the Merck Manual, chocolate is one of the 12 foods most likely to trigger the classic food allergy symptoms: hives, swelling of the lips and eyes, and upset stomach.* The others are berries (blackberries, blueberries, raspberries, strawberries), corn, eggs, fish, legumes (green peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see wheat cer ea ls).
Food/Drug Interactions Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyra- mine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. Caffeine is a substance similar to tyramine. If you consume excessive amounts of a caffeinated food, such as cocoa or chocolate, while you are taking an M AO inhibitor, the result may be a hypertensive crisis. False-positive test for pheochromocytoma. Pheochromocytoma, a tumor of the adrenal gland, secretes adrenalin, which the body converts to VM A (vanillylmandelic acid). VM A is excreted in urine, and, until recently, the test for this tumor measured the level of VM A in the urine. In the past, chocolate and cocoa, both of which contain VM A, were eliminated from the patient’s diet prior to the test lest they elevate the level of VM A in the urine and produce a false-positive result. Today, more finely drawn tests usually make this unnecessary. * The evidence link ing chocolate to allergic or migraine headaches is inconsistent. In some people, phenylet hylamine (PEA) seems to cause headaches similar to t hose induced by t yramine, anot her pressor amine. The PEA-induced headache is unusual in t hat it is a delayed react ion t hat usually occurs 12 or more hours after t he chocolate is eaten.... chocolate
An appreciation of the need to account for chance and bias has led to development of methods where new treatments are compared to either a PLACEBO or to the standard treatment (or both) in a controlled, randomised clinical trial. ‘Controlled’ means that there is a comparison group of patients not receiving the test intervention, and ‘randomised’ implies that patients have been assigned to one or other treatment group entirely by chance and not because of their doctor’s preference. If possible, trials are ‘double-blind’ – that is, neither the patient nor the investigator knows who is receiving which intervention until after the trial is over. All such trials must follow proper ethical standards with the procedure fully explained to patients and their consent obtained.
The conduct, e?ectiveness and duplication of clinical trials have long been subjects of debate. Apart from occasional discoveries of deliberately fraudulent research (see RESEARCH FRAUD AND MISCONDUCT), the structure of some trials are unsatisfactory, statistical analyses are sometimes disputed and major problems have been the – usually unwitting – duplication of trials and non-publication of some trials, restricting access to their ?ndings. Duplication occurs because no formal international mechanism exists to enable research workers to discover whether a clinical trial they are planning is already underway elsewhere or has been completed but never published, perhaps because the results were negative, or no journal was willing to publish it, or the authors or funding authorities decided not to submit it for publication.
In the mid 1980s a proposal was made for an international register of clinical trials. In 1991 the NHS launched a research and development initiative and, liaising with the COCHRANE COLLABORATION, set out to collect systematically data from published randomised clinical trials. In 1994 the NHS set up a Centre for Reviews and Dissemination which, among other responsibilities, maintains a database of research reviews to provide NHS sta? with relevant information.
These e?orts are hampered by availability of information about trials in progress and unpublished completed trials. With a view to improving accessibility of relevant information, the publishers of Current Science, in 1998, launched an online metaregister of ongoing randomised controlled trials.
Subsequently, in October 1999, the editors of the British Medical Journal and the Lancet argued that the case for an international register of all clinical trials prior to their launch was unanswerable. ‘The public’, they said, ‘has the right to know what research is being funded. Researchers and research funders don’t want to waste resources repeating trials already underway.’ Given the widening recognition of the importance to patients and doctors of the practice of EVIDENCE-BASED MEDICINE, the easy availability of information on planned, ongoing and completed clinical trials is vital. The register was ?nally set up in 2005.... clinical trials
Nutritional Profile Energy value (calories per serving): Moderate Protein: High Fat: Low to moderate Saturated fat: Low to moderate Cholesterol: Moderate Carbohydrates: Low Fiber: None Sodium: Low (fresh fish) High (some canned or salted fish) Major vitamin contribution: Vitamin A, vitamin D Major mineral contribution: Iodine, selenium, phosphorus, potassium, iron, calcium
About the Nutrients in This Food Like meat, poultry, milk, and eggs, fish are an excellent source of high- quality proteins with sufficient amount of all the essential amino acids. While some fish have as much or more fat per serving than some meats, the fat content of fish is always lower in saturated fat and higher in unsaturated fats. For example, 100 g/3.5 ounce cooked pink salmon (a fatty fish) has 4.4 g total fat, but only 0.7 g saturated fat, 1.2 g monounsaturated fat, and 1.7 g polyunsaturated fat; 100 g/3.5 ounce lean top sirloin has four grams fat but twice as much saturated fat (1.5 g), plus 1.6 g monounsatu- rated fat and only 0.2 g polyunsaturated fat. Omega-3 Fatty Acid Content of Various Fish (Continued) Fish Grams/ounce Rainbow trout 0.30 Lake whitefish 0.25 Source: “Food for t he Heart,” American Health, April 1985. Fish oils are one of the few natural food sources of vitamin D. Salmon also has vita- min A derived from carotenoid pigments in the plants eaten by the fish. The soft bones in some canned salmon and sardines are an excellent source of calcium. CAUTION: do not eat the bones in r aw or cook ed fish. the only bones consider ed edible ar e those in the canned products.
The Most Nutritious Way to Serve This Food Cooked, to kill parasites and potentially pathological microorganisms living in raw fish. Broiled, to liquify fat and eliminate the fat-soluble environmental contaminants found in some freshwater fish. With the soft, mashed, calcium-rich bones (in canned salmon and canned sardines).
Diets That May Restrict or Exclude This Food Low-purine (antigout) diet Low-sodium diet (canned, salted, or smoked fish)
Buying This Food Look for: Fresh-smelling whole fish with shiny skin; reddish pink, moist gills; and clear, bulging eyes. The flesh should spring back when you press it lightly. Choose fish fillets that look moist, not dry. Choose tightly sealed, solidly frozen packages of frozen fish. In 1998, the FDA /National Center for Toxicological Research released for testing an inexpensive indicator called “Fresh Tag.” The indicator, to be packed with seafood, changes color if the product spoils. Avoid: Fresh whole fish whose eyes have sunk into the head (a clear sign of aging); fillets that look dry; and packages of frozen fish that are stained (whatever leaked on the package may have seeped through onto the fish) or are coated with ice crystals (the package may have defrosted and been refrozen).
Storing This Food Remove fish from plastic wrap as soon as you get it home. Plastic keeps out air, encouraging the growth of bacteria that make the fish smell bad. If the fish smells bad when you open the package, throw it out. Refrigerate all fresh and smoked fish immediately. Fish spoils quickly because it has a high proportion of polyunsaturated fatty acids (which pick up oxygen much more easily than saturated or monounsaturated fatty acids). Refrigeration also slows the action of microorgan- isms on the surface of the fish that convert proteins and other substances to mucopolysac- charides, leaving a slimy film on the fish. Keep fish frozen until you are ready to use it. Store canned fish in a cool cabinet or in a refrigerator (but not the freezer). The cooler the temperature, the longer the shelf life.
Preparing This Food Fresh fish. Rub the fish with lemon juice, then rinse it under cold running water. The lemon juice (an acid) will convert the nitrogen compounds that make fish smell “fishy” to compounds that break apart easily and can be rinsed off the fish with cool running water. R insing your hands in lemon juice and water will get rid of the fishy smell after you have been preparing fresh fish. Frozen fish. Defrost plain frozen fish in the refrigerator or under cold running water. Pre- pared frozen fish dishes should not be thawed before you cook them since defrosting will make the sauce or coating soggy. Salted dried fish. Salted dried fish should be soaked to remove the salt. How long you have to soak the fish depends on how much salt was added in processing. A reasonable average for salt cod, mackerel, haddock (finnan haddie), or herring is three to six hours, with two or three changes of water. When you are done, clean all utensils thoroughly with hot soap and hot water. Wash your cutting board, wood or plastic, with hot water, soap, and a bleach-and-water solution. For ultimate safety in preventing the transfer of microorganisms from the raw fish to other foods, keep one cutting board exclusively for raw fish, meats, and poultry, and a second one for everything else. Finally, don’t forget to wash your hands.
What Happens When You Cook This Food Heat changes the structure of proteins. It denatures the protein molecules so that they break apart into smaller fragments or change shape or clump together. These changes force moisture out of the tissues so that the fish turns opaque. The longer you cook fish, the more moisture it will lose. Cooked fish flakes because the connective tissue in fish “melts” at a relatively low temperature. Heating fish thoroughly destroys parasites and microorganisms that live in raw fish, making the fish safer to eat.
How Other Kinds of Processing Affect This Food Marinating. Like heat, acids coagulate the proteins in fish, squeezing out moisture. Fish marinated in citrus juices and other acids such as vinegar or wine has a firm texture and looks cooked, but the acid bath may not inactivate parasites in the fish. Canning. Fish is naturally low in sodium, but can ned fish often contains enough added salt to make it a high-sodium food. A 3.5-ounce ser ving of baked, fresh red salmon, for example, has 55 mg sodium, while an equal ser ving of regular can ned salmon has 443 mg. If the fish is can ned in oil it is also much higher in calories than fresh fish. Freezing. When fish is frozen, ice cr ystals form in the flesh and tear its cells so that mois- ture leaks out when the fish is defrosted. Commercial flash-freezing offers some protec- tion by freezing the fish so fast that the ice cr ystals stay small and do less damage, but all defrosted fish tastes drier and less palatable than fresh fish. Freezing slows but does not stop the oxidation of fats that causes fish to deteriorate. Curing. Fish can be cured (preser ved) by smoking, dr ying, salting, or pickling, all of which coagulate the muscle tissue and prevent microorganisms from growing. Each method has its own particular drawbacks. Smoking adds potentially carcinogenic chemicals. Dr ying reduces the water content, concentrates the solids and nutrients, increases the calories per ounce, and raises the amount of sodium.
Medical Uses and/or Benefits Protection against cardiovascular disease. The most important fats in fish are the poly- unsaturated acids k nown as omega-3s. These fatt y acids appear to work their way into heart cells where they seem to help stabilize the heart muscle and prevent potentially fatal arrhythmia (irregular heartbeat). A mong 85,000 women in the long-run n ing Nurses’ Health Study, those who ate fatt y fish at least five times a week were nearly 50 percent less likely to die from heart disease than those who ate fish less frequently. Similar results appeared in men in the equally long-run n ing Physicians’ Health Study. Some studies suggest that people may get similar benefits from omega-3 capsules. Researchers at the Consorzio Mario Negri Sud in Santa Maria Imbaro ( Italy) say that men given a one-gram fish oil capsule once a day have a risk of sudden death 42 percent lower than men given placebos ( “look-alike” pills with no fish oil). However, most nutrition scientists recom- mend food over supplements. Omega-3 Content of Various Food Fish Fish* (3 oz.) Omega-3 (grams) Salmon, Atlantic 1.8 Anchovy, canned* 1.7 Mackerel, Pacific 1.6 Salmon, pink, canned* 1.4 Sardine, Pacific, canned* 1.4 Trout, rainbow 1.0 Tuna, white, canned* 0.7 Mussels 0.7 * cooked, wit hout sauce * drained Source: Nat ional Fisheries Inst itute; USDA Nut rient Data Laborator y. Nat ional Nut ri- ent Database for Standard Reference. Available online. UR L : http://w w w.nal.usda. gov/fnic/foodcomp/search /.
Adverse Effects Associated with This Food Allergic reaction. According to the Merck Manual, fish is one of the 12 foods most likely to trigger classic food allergy symptoms: hives, swelling of the lips and eyes, and upset stom- ach. The others are berries (blackberries, blueberries, raspberries, strawberries), chocolate, corn, eggs, legumes (green peas, lima beans, peanuts, soybeans), milk, nuts, peaches, pork, shellfish, and wheat (see wheat cer ea ls). NOTE : Canned tuna products may contain sulfites in vegetable proteins used to enhance the tuna’s flavor. People sensitive to sulfites may suf- fer serious allergic reactions, including potentially fatal anaphylactic shock, if they eat tuna containing sulfites. In 1997, tuna manufacturers agreed to put warning labels on products with sulfites. Environmental contaminants. Some fish are contaminated with methylmercury, a compound produced by bacteria that chemically alters naturally occurring mercury (a metal found in rock and soil) or mercury released into water through industrial pollution. The methylmer- cury is absorbed by small fish, which are eaten by larger fish, which are then eaten by human beings. The larger the fish and the longer it lives the more methylmercury it absorbs. The measurement used to describe the amount of methylmercury in fish is ppm (parts per mil- lion). Newly-popular tilapia, a small fish, has an average 0.01 ppm, while shark, a big fish, may have up to 4.54 ppm, 450 times as much. That is a relatively small amount of methylmercur y; it will soon make its way harmlessly out of the body. But even small amounts may be hazardous during pregnancy because methylmercur y targets the developing fetal ner vous system. Repeated studies have shown that women who eat lots of high-mercur y fish while pregnant are more likely to deliver babies with developmental problems. As a result, the FDA and the Environ men- tal Protection Agency have now warned that women who may become pregnant, who are pregnant, or who are nursing should avoid shark, swordfish, king mackerel, and tilefish, the fish most likely to contain large amounts of methylmercur y. The same prohibition applies to ver y young children; although there are no studies of newborns and babies, the young brain continues to develop after birth and the logic is that the prohibition during pregnancy should extend into early life. That does not mean no fish at all should be eaten during pregnancy. In fact, a 2003 report in the Journal of Epidemiology and Community Health of data from an 11,585-woman study at the University of Bristol (England) shows that women who don’t eat any fish while pregnant are nearly 40 percent more likely to deliver low birth-weight infants than are women who eat about an ounce of fish a day, the equivalent of 1/3 of a small can of tuna. One theory is that omega-3 fatty acids in the fish may increase the flow of nutrient-rich blood through the placenta to the fetus. University of Southern California researchers say that omega-3s may also protect some children from asthma. Their study found that children born to asthmatic mothers who ate oily fish such as salmon at least once a month while pregnant were less likely to develop asthma before age five than children whose asthmatic pregnant mothers never ate oily fish. The following table lists the estimated levels of mercury in common food fish. For the complete list of mercury levels in fish, click onto www.cfsan.fda.gov/~frf/sea-mehg.html. Mercury Levels in Common Food Fish Low levels (0.01– 0.12 ppm* average) Anchovies, butterfish, catfish, clams, cod, crab (blue, king, snow), crawfish, croaker (Atlantic), flounder, haddock, hake, herring, lobster (spiny/Atlantic) mackerel, mul- let, ocean perch, oysters, pollock, salmon (canned/fresh frozen), sardines, scallops, shad (American), shrimp, sole, squid, tilapia, trout (freshwater), tuna (canned, light), whitefish, whiting Mid levels (0.14 – 0.54 ppm* average) Bass (salt water), bluefish, carp, croaker ( Pacific), freshwater perch, grouper, halibut, lobster (Northern A merican), mackerel (Spanish), marlin, monkfish, orange roughy, skate, snapper, tilefish (Atlantic), tuna (can ned albacore, fresh/frozen), weakfish/ sea trout High levels (0.73 –1.45 ppm* average) King mackerel, shark, swordfish, tilefish * ppm = parts per million, i.e. parts of mercur y to 1,000,000 parts fish Source: U.S. Food and Drug Administ rat ion, Center for Food Safet y and Applied Nut rit ion, “Mercur y Levels in Commercial Fish and Shellfish.” Available online. UR L : w w w.cfsan.fda. gov/~frf/sea-mehg.ht ml. Parasitical, viral, and bacterial infections. Like raw meat, raw fish may carry various pathogens, including fish tapeworm and flukes in freshwater fish and Salmonella or other microorganisms left on the fish by infected foodhandlers. Cooking the fish destroys these organisms. Scombroid poisoning. Bacterial decomposition that occurs after fish is caught produces a his- taminelike toxin in the flesh of mackerel, tuna, bonito, and albacore. This toxin may trigger a number of symptoms, including a flushed face immediately after you eat it. The other signs of scombroid poisoning—nausea, vomiting, stomach pain, and hives—show up a few minutes later. The symptoms usually last 24 hours or less.
Food/Drug Interactions Monoamine oxidase (MAO) inhibitors. Monoamine oxidase inhibitors are drugs used to treat depression. They inactivate naturally occurring enzymes in your body that metabolize tyramine, a substance found in many fermented or aged foods. Tyramine constricts blood vessels and increases blood pressure. If you eat a food such as pickled herring, which is high in tyramine, while you are taking an M AO inhibitor, your body may not be able to eliminate the tyramine and the result may be a hypertensive crisis.... fish
Nutritional Profile Energy value (calories per serving): Low Protein: Moderate Fat: Low Saturated fat: Low Cholesterol: None Carbohydrates: High Fiber: High Sodium: Low Major vitamin contribution: Vitamin C Major mineral contribution: Iron, selenium
About the Nutrients in This Food Although raw garlic has some fiber and protein plus vitamins and minerals, we rarely eat enough garlic to get useful amounts of these nutrients. Source: USDA Nut rient Data Laborator y. Nat ional Nut rient Database for Standard Reference. Available online. UR L : http://w w w.nal.usda. gov/fnic/foodcomp/search /. Elephant garlic, a cross between an onion and garlic that may grow as large as a grapefruit, has a milder flavor than regular garlic. Garlic contains alliin and allicin, two sulfur compounds with antibi- otic activity. In a number of laboratory experiments, garlic juice appears to inhibit the growth of a broad variety of bacteria, yeast, and fungi growing in test tubes, but its effects on human beings have yet to be proven.
Diets That May Restrict or Exclude This Food Antiflatulence diet Bland diet
Buying This Food Look for: Firm, solid cloves with tight clinging skin. If the skin is paper y and pulling away from the cloves and the head feels light for its size, the garlic has withered or rotted away inside.
The Most Nutritious Way to Serve This Food Fresh.
Storing This Food Store garlic in a cool, dark, air y place to keep it from dr ying out or sprouting. ( When garlic sprouts, diallyl disulfide—the sulfur compound that gives fresh garlic its distinctive taste and odor—goes into the new growth and the garlic itself becomes milder.) A n unglazed ceramic “garlic keeper” will protect the garlic from moisture while allowing air to circulate freely around the head and cloves. Properly stored, garlic will keep for several months. Do not refrigerate garlic unless you live in a very hot and humid climate.
Preparing This Food To peel garlic easily, blanch the cloves in boiling water for about 30 seconds, then drain and cool. Slice off the root end, and the skin should come right off without sticking to your fin- gers. Or you can put a head of fresh, raw garlic on a flat surface and hit the flat end with the flat side of a knife. The head will come apart and the skin should come off easily. To get the most “garlicky” taste from garlic cloves, chop or mash them or extract the oil with a garlic press. When you cut into a garlic clove, you tear its cell walls, releasing an enzyme that converts sulfur compounds in the garlic into ammonia, pyruvic acid, and diallyl disulfide.
What Happens When You Cook This Food Heating garlic destroys its diallyl disulfide, which is why cooked garlic is so much milder tasting than raw garlic.
How Other Kinds of Processing Affect This Food Drying. Drying removes moisture from garlic but leaves the oils intact. Powdered garlic and garlic salt should be stored in a cool, dry place to keep their oils from turning rancid. Garlic salt is much higher in sodium than either raw garlic, garlic powder, or dried garlic flakes.
Medical Uses and/or Benefits Protection against some cancers. The organic sulfur compounds in garlic and onions appear to reduce the risk of some forms of cancer perhaps by preventing the formation of carcinogens in your body or by blocking carcinogens from reaching or reacting with sensitive body tis- sues or by inhibiting the transformation of healthy cells to malignant ones. Protection against circulatory diseases. In a number of laboratory studies during the 1980s, adding garlic oil to animal feeds reduced levels of low-density lipoproteins (LDLs), the fat and protein particles that carry cholesterol into your arteries, and raised levels of high density lipoproteins (HDLs), the particles that carry cholesterol out of the body. However, current studies are contradictory. One year-long study at the Harbor-UCLA Medical Center showed that daily doses of aged garlic (brand name Kyolic) appeared to reduce the formation of cholesterol deposits in arteries while lowering blood levels of homocysteine, an amino acid the American Heart Association calls an independent risk factor for heart disease. But another study funded by the National Center for Complementary and Alternative Medicine (NCCAM), a division of the National Institutes of Health, to determine the safety and effec- tiveness of garlic showed that neither fresh garlic nor powdered garlic nor garlic tablets have any effect on cholesterol levels.
Adverse Effects Associated with This Food Body odor, halitosis. Diallyl disulfide is excreted in perspiration and in the air you exhale, which is why eating garlic makes you smell garlicky.
Food/Drug Interactions Anticoagulants (blood thinners). Garlic appears to reduce blood’s ability to clot, thus increas- ing the effect of anticoagulants, including aspirin. NCCAM recommends using garlic with caution before surgery, including dental surgery. Patients who have a clotting disorder should consult their own doctors before using garlic.... garlic