Thalassaemia Health Dictionary

Thalassaemia: From 3 Different Sources


A group of inherited blood disorders in which there is a fault in the production of haemoglobin. Many of the red blood cells become fragile and haemolyse (break up), leading to anaemia (see anaemia, haemolytic). Thalassaemia is prevalent in the Mediterranean, the Middle East, and Southeast Asia, and in families originating from these areas.

Normal adult haemoglobin contains 2 pairs of globins (protein chains): alpha and beta. In thalassaemia, a recessive defective gene results in reduced synthesis of 1 of the chains. Usually beta-chain production is disturbed (beta-thalassaemia). Beta-thalassaemia minor (thalassaemia

trait), which is never severe, is caused by 1 defective gene. The presence of 2 defective genes causes beta-thalassaemia major (Cooley’s anaemia). The much rarer disorder alpha-thalassaemia varies in severity; alpha-thalassaemia major usually results in fetal death.

Symptoms of beta-thalassaemia major appear 3–6 months after birth. If untreated, bone marrow cavities expand, leading to a characteristic enlargement of the skull and facial bones.

Beta-thalassaemia major is diagnosed from microscopic examination of the blood, and from other blood tests. Treatment is with blood transfusions and, sometimes, splenectomy. However, successive blood transfusions cause a buildup of iron in the body (see haemosiderosis). Chelating agents are given by continuous infusion to help the body excrete the excess iron. A bone marrow transplant offers a cure for the disease.

Genetic counselling is advised for parents or other close relatives of a child with thalassaemia, and also for any person with thalassaemia trait.

Health Source: BMA Medical Dictionary
Author: The British Medical Association
Also known as Cooley’s anaemia, this is a condition characterised by severe ANAEMIA, due to an abnormal form of HAEMOGLOBIN in the blood. It is an inherited disease which is widely spread across the Mediterranean through the Middle East and into the Far East. It has a particularly high incidence in Greece and in Italy. The abnormal haemoglobin prevents the affected red cells from functioning properly. This results in the anaemia. The SPLEEN enlarges and abnormalities occur in the BONE MARROW. If someone inherits the disease from both parents, he or she is seriously affected but, if only one parent had the abnormal gene (see GENES), the person could well be free of symptoms. The severe form of the disorder is called thalassaemia major and affected individuals need repeated blood transfusions as well as treatment to remove excessive iron from their body. The disease can be diagnosed by prenatal investigation.
Health Source: Medical Dictionary
Author: Health Dictionary
(Cooley’s anaemia) n. a hereditary blood disease, widespread in the Mediterranean countries, Asia, and Africa, in which there is an abnormality in the protein part of the *haemoglobin molecule. The affected red cells cannot function normally, leading to anaemia. Other symptoms include enlargement of the spleen and abnormalities of the bone marrow. Individuals inheriting the defective gene from both parents are severely affected (thalassaemia major), but those inheriting it from only one parent are usually symptom-free. Patients with the major disease are treated with repeated blood transfusions or bone marrow transplantation. The disease can be detected by prenatal diagnosis.
Health Source: Oxford | Concise Colour Medical Dictionary
Author: Jonathan Law, Elizabeth Martin

Desferrioxamine

An agent which binds to heavy metals, used in the treatment of iron poisoning and THALASSAEMIA.... desferrioxamine

Anaemia

The condition characterised by inadequate red blood cells and/or HAEMOGLOBIN in the BLOOD. It is considered to exist if haemoglobin levels are below 13 grams per 100 ml in males and below 12 grams per 100 ml in adult nonpregnant women. No simple classi?cation of anaemia can be wholly accurate, but the most useful method is to divide anaemias into: (a) microcytic hypochromic or iron de?ciency anaemia; (b) megaloblastic hyperchromic anaemia; (c) aplastic anaemia; (d) haemolytic anaemia; (e) inherited anaemias (see below).

In Britain, anaemia is much more common among women than men. Thus, around 10 per cent of girls have anaemia at the age of 15, whilst in adult life the incidence is over 30 per cent between the ages of 30 and 40, around 20 per cent at 50, and around 30 per cent at 70. Among men the incidence is under 5 per cent until the age of 50; it then rises to 20 per cent at the age of 70. Ninety per cent of all cases of anaemia in Britain are microcytic, 7 per cent are macrocytic, and 3 per cent are haemolytic or aplastic. Inherited anaemias include sickle-cell anaemia and THALASSAEMIA.... anaemia

Cooley’s Anaemia

See thalassaemia.... cooley’s anaemia

Haemoglobinopathy

A term used to describe the genetic disorders in which there is a fault in the production of the globin chains of haemoglobin.

Examples of haemoglobinopathies include sickle cell anaemia and the thalassaemias.... haemoglobinopathy

Child Health

Paediatrics is the branch of medicine which deals with diseases of children, but many paediatricians have a wider role, being employed largely outside acute hospitals and dealing with child health in general.

History Child health services were originally designed, before the NHS came into being, to ?nd or prevent physical illness by regular inspections. In the UK these were carried out by clinical medical o?cers (CMOs) working in infant welfare clinics (later, child health clinics) set up to ?ll the gap between general practice and hospital care. The services expanded greatly from the mid 1970s; ‘inspections’ have evolved into a regular screening and surveillance system by general practitioners and health visitors, while CMOs have mostly been replaced by consultant paediatricians in community child health (CPCCH).

Screening Screening begins at birth, when every baby is examined for congenital conditions such as dislocated hips, heart malformations, cataract and undescended testicles. Blood is taken to ?nd those babies with potentially brain-damaging conditions such as HYPOTHYROIDISM and PHENYLKETONURIA. Some NHS trusts screen for the life-threatening disease CYSTIC FIBROSIS, although in future it is more likely that ?nding this disease will be part of prenatal screening, along with DOWN’S (DOWN) SYNDROME and SPINA BIFIDA. A programme to detect hearing impairment in newborn babies has been piloted from 2001 in selected districts to ?nd out whether it would be a useful addition to the national screening programme. Children from ethnic groups at risk of inherited abnormalities of HAEMOGLOBIN (sickle cell disease; thalassaemia – see under ANAEMIA) have blood tested at some time between birth and six months of age.

Illness prevention At two months, GPs screen babies again for these abnormalities and start the process of primary IMMUNISATION. The routine immunisation programme has been dramatically successful in preventing illness, handicap and deaths: as such it is the cornerstone of the public health aspect of child health, with more potential vaccines being made available every year. Currently, infants are immunised against pertussis (see WHOOPING COUGH), DIPHTHERIA, TETANUS, POLIOMYELITIS, haemophilus (a cause of MENINGITIS, SEPTICAEMIA, ARTHRITIS and epiglottitis) and meningococcus C (SEPTICAEMIA and meningitis – see NEISSERIACEAE) at two, three and four months. Selected children from high-risk groups are o?ered BCG VACCINE against tuberculosis and hepatitis vaccine. At about 13 months all are o?ered MMR VACCINE (measles, mumps and rubella) and there are pre-school entry ‘boosters’ of diphtheria, tetanus, polio, meningococcus C and MMR. Pneumococcal vaccine is available for particular cases but is not yet part of the routine schedule.

Health promotion and education Throughout the UK, parents are given their child’s personal health record to keep with them. It contains advice on health promotion, including immunisation, developmental milestones (when did he or she ?rst smile, sit up, walk and so on), and graphs – called centile charts – on which to record height, weight and head circumference. There is space for midwives, doctors, practice nurses, health visitors and parents to make notes about the child.

Throughout at least the ?rst year of life, both parents and health-care providers set great store by regular weighing, designed to pick up children who are ‘failing to thrive’. Measuring length is not quite so easy, but height measurements are recommended from about two or three years of age in order to detect children with disorders such as growth-hormone de?ciency, malabsorption (e.g. COELIAC DISEASE) and psychosocial dwar?sm (see below).

All babies have their head circumference measured at birth, and again at the eight-week check. A too rapidly growing head implies that the infant might have HYDROCEPHALUS – excess ?uid in the hollow spaces within the brain. A too slowly growing head may mean failure of brain growth, which may go hand in hand with physically or intellectually delayed development.

At about eight months, babies receive a surveillance examination, usually by a health visitor. Parents are asked if they have any concerns about their child’s hearing, vision or physical ability. The examiner conducts a screening test for hearing impairment – the so-called distraction test; he or she stands behind the infant, who is on the mother’s lap, and activates a standardised sound at a set distance from each ear, noting whether or not the child turns his or her head or eyes towards the sound. If the child shows no reaction, the test is repeated a few weeks later; if still negative then referral is made to an audiologist for more formal testing.

The doctor or health visitor will also go through the child’s developmental progress (see above) noting any signi?cant deviation from normal which merits more detailed examination. Doctors are also recommended to examine infants developmentally at some time between 18 and 24 months. At this time they will be looking particularly for late walking or failure to develop appropriate language skills.... child health

Cooley’s Anaemia

See THALASSAEMIA.... cooley’s anaemia

Pregnancy And Labour

Pregnancy The time when a woman carries a developing baby in her UTERUS. For the ?rst 12 weeks (the ?rst trimester) the baby is known as an EMBRYO, after which it is referred to as the FETUS.

Pregnancy lasts about 280 days and is calculated from the ?rst day of the last menstrual period – see MENSTRUATION. Pregnancy-testing kits rely on the presence of the hormone beta HUMAN CHORIONIC GONADOTROPHIN (b HCG) which is excreted in the woman’s urine as early as 30 days from the last menstrual period. The estimated date of delivery can be accurately estimated from the size of the developing fetus measured by ULTRASOUND (see also below) between seven and 24 weeks. ‘Term’ refers to the time that the baby is due; this can range from 38 weeks to 41 completed weeks.

Physical changes occur in early pregnancy – periods stop and the abdomen enlarges. The breasts swell, with the veins becoming prominent and the nipples darkening. About two in three women will have nausea with a few experiencing such severe vomiting as to require hospital admission for rehydration.

Antenatal care The aim of antenatal care is to ensure a safe outcome for both mother and child; it is provided by midwives (see MIDWIFE) and doctors. Formal antenatal care began in Edinburgh in the 1930s with the recognition that all aspects of pregnancy – normal and abnormal – warranted surveillance. Cooperation between general practitioners, midwives and obstetricians is now established, with pregnancies that are likely to progress normally being cared for in the community and only those needing special intervention being cared for in a hospital setting.

The initial visit (or booking) in the ?rst half of pregnancy will record the history of past events and the results of tests, with the aim of categorising the patients into normal or not. Screening tests including blood checks and ultrasound scans are a routine part of antenatal care. The ?rst ultrasound scan is done at about 11 weeks to date the pregnancy, with a further one done at 20 weeks – the anomaly scan – to assess the baby’s structure. Some obstetric units will check the growth of the baby with one further scan later in the pregnancy or, in the case of twin pregnancies (see below), many scans throughout. The routine blood tests include checks for ANAEMIA, DIABETES MELLITUS, sickle-cell disease and THALASSAEMIA, as well as for the blood group. Evidence of past infections is also looked for; tests for RUBELLA (German measles) and SYPHILIS are routine, whereas tests for human immunode?ciency virus (see AIDS/ HIV below) and HEPATITIS are being o?ered as optional, although there is compelling evidence that knowledge of the mother’s infection status is bene?cial to the baby.

Traditional antenatal care consists of regular appointments, initially every four weeks until 34 weeks, then fortnightly or weekly. At each visit the mother’s weight, urine and blood pressure are checked, and assessment of fetal growth and position is done by palpating the uterus. Around two-thirds of pregnancies and labours are normal: in the remainder, doctors and midwives need to increase the frequency of surveillance so as to prevent or deal with maternal and fetal problems.

Common complications of pregnancy

Some of the more common complications of pregnancy are listed below.

As well as early detection of medical complications, antenatal visits aim to be supportive and include emotional and educational care. Women with uncomplicated pregnancies are increasingly being managed by midwives and general practitioners in the community and only coming to the hospital doctors should they develop a problem. A small number will opt for a home delivery, but facilities for providing such a service are not always available in the UK.

Women requiring more intensive surveillance have their management targeted to the speci?c problems encountered. Cardiologists will see mothers-to-be with heart conditions, and those at risk of diabetes are cared for in designated clinics with specialist sta?. Those women needing more frequent surveillance than standard antenatal care can be looked after in maternity day centres. These typically include women with mildly raised blood pressure or those with small babies. Fetal medicine units have specialists who are highly skilled in ultrasound scanning and specialise in the diagnosis and management of abnormal babies still in the uterus. ECTOPIC PREGNANCY Chronic abdominal discomfort early in pregnancy may be caused by unruptured ectopic pregnancy, when, rarely, the fertilised OVUM starts developing in the Fallopian tube (see FALLOPIAN TUBES) instead of the uterus. The patient needs hospital treatment and LAPAROSCOPY. A ruptured ectopic pregnancy causes acute abdominal symptoms and collapse, and the woman will require urgent abdominal surgery. URINARY TRACT INFECTIONS These affect around 2 per cent of pregnant women and are detected by a laboratory test of a mid-stream specimen of urine. In pregnancy, symptoms of these infections do not necessarily resemble those experienced by non-pregnant women. As they can cause uterine irritability and possible premature labour (see below), it is important to ?nd and treat them appropriately. ANAEMIA is more prevalent in patients who are vegetarian or on a poor diet. Iron supplements are usually given to women who have low concentrations of HAEMOGLOBIN in their blood (less than 10.5 g/dl) or who are at risk of becoming low in iron, from bleeding, twin pregnancies and those with placenta previa (see below). ANTEPARTUM HAEMORRHAGE Early in pregnancy, vaginal bleedings may be due to a spontaneous or an incomplete therapeutic ABORTION. Bleeding from the genital tract between 24 completed weeks of pregnancy and the start of labour is called antepartum haemorrhage. The most common site is where the PLACENTA is attached to the wall of the uterus. If the placenta separates before delivery, bleeding occurs in the exposed ‘bed’. When the placenta is positioned in the upper part of the uterus it is called an abruption. PLACENTA PRAEVIA is sited in the lower part and blocks or partly blocks the cervix (neck of the womb); it can be identi?ed at about the 34th week. Ten per cent of episodes of antepartum bleeding are caused by placenta previa, and it may be associated with bleeding at delivery. This potentially serious complication is diagnosed by ultrasound scanning and may require a caesarean section (see below) at delivery. INCREASED BLOOD PRESSURE, associated with protein in the urine and swelling of the limbs, is part of a condition known as PRE-ECLAMPSIA. This occurs in the second half of pregnancy in about 1 in 10 women expecting their ?rst baby, and is mostly very mild and of no consequence to the pregnancy. However, some women can develop extremely high blood pressures which can adversely affect the fetus and cause epileptic-type seizures and bleeding disorders in the mother. This serious condition is called ECLAMPSIA. For this reason a pregnant woman with raised blood pressure or PROTEIN in her urine is carefully evaluated with blood tests, often in the maternity day assessment unit. The condition can be stopped by delivery of the baby, and this will be done if the mother’s or the fetus’s life is in danger. If the condition is milder, and the baby not mature enough for a safe delivery, then drugs can be used to control the blood pressure. MISCARRIAGE Also called spontaneous abortion, miscarriage is the loss of the fetus. There are several types:

threatened miscarriage is one in which some vaginal bleeding occurs, the uterus is enlarged, but the cervix remains closed and pregnancy usually proceeds.

inevitable miscarriage usually occurs before the 16th week and is typi?ed by extensive blood loss through an opened cervix and cramp-like abdominal pain; some products of conception are lost but the developing placental area (decidua) is retained and an operation may be necessary to clear the womb.

missed miscarriages, in which the embryo dies and is absorbed, but the decidua (placental area of uterine wall) remains and may cause abdominal discomfort and discharge of old blood.

THERAPEUTIC ABORTION is performed on more than 170,000 women annually in England and Wales. Sometimes the woman may not have arranged the procedure through the usual health-care channels, so that a doctor may see a patient with vaginal bleeding, abdominal discomfort or pain, and open cervix – symptoms which suggest that the decidua and a blood clot have been retained; these retained products will need to be removed by curettage.

Septic abortions are now much less common in Britain than before the Abortion Act (1967) permitted abortion in speci?ed circumstances. The cause is the passage of infective organisms from the vagina into the uterus, with Escherichia coli and Streptococcus faecalis the most common pathogenic agents. The woman has abdominal pain, heavy bleeding, usually fever and sometimes she is in shock. The cause is usually an incomplete abortion or one induced in unsterile circumstances. Antibiotics and curettage are the treatment. INTRAUTERINE GROWTH RETARDATION describes a slowing of the baby’s growth. This can be diagnosed by ultrasound scanning, although there is a considerable margin of error in estimates of fetal weight. Trends in growth are favoured over one-o? scan results alone. GESTATIONAL DIABETES is a condition that is more common in women who are overweight or have a family member with diabetes. If high concentrations of blood sugar are found, e?orts are made to correct it as the babies can become very fat (macrosomia), making delivery more di?cult. A low-sugar diet is usually enough to control the blood concentration of sugars; however some women need small doses of INSULIN to achieve control. FETAL ABNORMALITIES can be detected before birth using ultrasound. Some of these defects are obvious, such as the absence of kidneys, a condition incompatible with life outside the womb. These women can be o?ered a termination of their pregnancy. However, more commonly, the pattern of problems can only hint at an abnormality and closer examination is needed, particularly in the diagnosis of chromosomal deformities such as DOWN’S (DOWN) SYNDROME (trisomy 21 or presence of three 21 chromosomes instead of two).

Chromosomal abnormalities can be de?nitively diagnosed only by cell sampling such as amniocentesis (obtaining amniotic ?uid – see AMNION – from around the baby) done at 15 weeks onwards, and chorionic villus sampling (sampling a small part of the placenta) – another technique which can be done from 12 weeks onwards. Both have a small risk of miscarriage associated with them; consequently, they are con?ned to women at higher risk of having an abnormal fetus.

Biochemical markers present in the pregnant woman’s blood at di?erent stages of pregnancy may have undergone changes in those carrying an abnormal fetus. The ?rst such marker to be routinely used was a high concentration of alpha-fetol protein in babies with SPINA BIFIDA (defects in the covering of the spinal cord). Fuller research has identi?ed a range of diagnostic markers which are useful, and, in conjunction with other factors such as age, ethnic group and ultrasound ?ndings, can provide a predictive guide to the obstetrician – in consultation with the woman – as to whether or not to proceed to an invasive test. These tests include pregnancy-associated plasma protein assessed from a blood sample taken at 12 weeks and four blood tests at 15–22 weeks – alphafetol protein, beta human chorionic gonadotrophin, unconjugated oestriol and inhibin A. Ultrasound itself can reveal physical ?ndings in the fetus, which can be more common in certain abnormalities. Swelling in the neck region of an embryo in early pregnancy (increased nuchal thickness) has good predictive value on its own, although its accuracy is improved in combination with the biochemical markers. The e?ectiveness of prenatal diagnosis is rapidly evolving, the aim being to make the diagnosis as early in the pregnancy as possible to help the parents make more informed choices. MULTIPLE PREGNANCIES In the UK, one in 95 deliveries is of twins, while the prevalence of triplets is one in 10,000 and quadruplets around one in 500,000. Racial variations occur, with African women having a prevalence rate of one in 30 deliveries for twins and Japanese women a much lower rate than the UK ?gure. Multiple pregnancies occur more often in older women, and in the UK the prevalence of fertility treatments, many of these being given to older women, has raised the incidence. There is now an o?cial limit of three eggs being transferred to a woman undergoing ASSISTED CONCEPTION (gamete intrafallopian transfer, or GIFT).

Multiple pregnancies are now usually diagnosed as a result of routine ultrasound scans between 16 and 20 weeks of pregnancy. The increased size of the uterus results in the mother having more or worse pregnancy-related conditions such as nausea, abdominal discomfort, backache and varicose veins. Some congenital abnormalities in the fetus occur more frequently in twins: NEURAL TUBE defects, abnormalities of the heart and the incidence of TURNER’S SYNDROME and KLINEFELTER’S SYNDROME are examples. Such abnormalities may be detected by ultrasound scans or amniocentesis. High maternal blood pressure and anaemia are commoner in women with multiple pregnancies (see above).

The growth rates of multiple fetuses vary, but the di?erence between them and single fetuses are not that great until the later stages of pregnancy. Preterm labour is commoner in multiple pregnancies: the median length of pregnancy is 40 weeks for singletons, 37 for twins and 33 for triplets. Low birth-weights are usually the result of early delivery rather than abnormalities in growth rates. Women with multiple pregnancies require more frequent and vigilant antenatal assessments, with their carers being alert to the signs of preterm labour occurring. CEPHALOPELVIC DISPROPORTION Disparity between the size of the fetus and the mother’s pelvis is not common in the UK but is a signi?cant problem in the developing world. Disparity is classi?ed as absolute, when there is no possibility of delivery, and relative, when the baby is large but delivery (usually after a dif?cult labour) is possible. Causes of absolute disparity include: a large baby – heavier than 5 kg at birth; fetal HYDROCEPHALUS; and an abnormal maternal pelvis. The latter may be congenital, the result of trauma or a contraction in pelvic size because of OSTEOMALACIA early in life. Disproportion should be suspected if in late pregnancy the fetal head has not ‘engaged’ in the pelvis. Sometimes a closely supervised ‘trial of labour’ may result in a successful, if prolonged, delivery. Otherwise a caesarean section (see below) is necessary. UNUSUAL POSITIONS AND PRESENTATIONS OF THE BABY In most pregnant women the baby ?ts into the maternal pelvis head-?rst in what is called the occipito-anterior position, with the baby’s face pointing towards the back of the pelvis. Sometimes, however, the head may face the other way, or enter the pelvis transversely – or, rarely, the baby’s neck is ?exed backwards with the brow or face presenting to the neck of the womb. Some malpositions will correct naturally; others can be manipulated abdominally during pregnancy to a better position. If, however, the mother starts labour with the baby’s head badly positioned or with the buttocks instead of the head presenting (breech position), the labour will usually be longer and more di?cult and may require intervention using special obstetric forceps to assist in extracting the baby. If progress is poor and the fetus distressed, caesarean section may be necessary. HIV INFECTION Pregnant women who are HIV positive (see HIV; AIDS/HIV) should be taking antiviral drugs in the ?nal four to ?ve months of pregnancy, so as to reduce the risk of infecting the baby in utero and during birth by around 50 per cent. Additional antiviral treatment is given before delivery; the infection risk to the baby can be further reduced – by about 40 per cent – if delivery is by caesarean section. The mother may prefer to have the baby normally, in which case great care should be taken not to damage the baby’s skin during delivery. The infection risk to the baby is even further reduced if it is not breast fed. If all preventive precautions are taken, the overall risk of the infant becoming infected is cut to under 5 per cent.

Premature birth This is a birth that takes place before the end of the normal period of gestation, usually before 37 weeks. In practice, however, it is de?ned as a birth that takes place when the baby weighs less than 2·5 kilograms (5••• pounds). Between 5 and 10 per cent of babies are born prematurely, and in around 40 per cent of premature births the cause is unknown. Pre-eclampsia is the most common known cause; others include hypertension, chronic kidney disease, heart disease and diabetes mellitus. Multiple pregnancy is another cause. In the vast majority of cases the aim of management is to prolong the pregnancy and so improve the outlook for the unborn child. This consists essentially of rest in bed and sedation, but there are now several drugs, such as RITODRINE, that may be used to suppress the activity of the uterus and so help to delay premature labour. Prematurity was once a prime cause of infant mortality but modern medical care has greatly improved survival rates in developing countries.

Labour Also known by the traditional terms parturition, childbirth or delivery, this is the process by which the baby and subsequently the placenta are expelled from the mother’s body. The onset of labour is often preceded by a ‘show’ – the loss of the mucus and blood plug from the cervix, or neck of the womb; this passes down the vagina to the exterior. The time before the beginning of labour is called the ‘latent phase’ and characteristically lasts 24 hours or more in a ?rst pregnancy. Labour itself is de?ned by regular, painful contractions which cause dilation of the neck of the womb and descent of the fetal head. ‘Breaking of the waters’ is the loss of amniotic ?uid vaginally and can occur any time in the delivery process.

Labour itself is divided into three stages: the ?rst is from the onset of labour to full (10 cm) dilation of the neck of the womb. This stage varies in length, ideally taking no more than one hour per centimetre of dilation. Progress is monitored by regular vaginal examinations, usually every four hours. Fetal well-being is observed by intermittent or continuous monitoring of the fetal heart rate in relation to the timing and frequency of the contractions. The print-out is called a cardiotocograph. Abnormalities of the fetal heart rate may suggest fetal distress and may warrant intervention. In women having their ?rst baby (primigravidae), the common cause of a slow labour is uncoordinated contractions which can be overcome by giving either of the drugs PROSTAGLANDIN or OXYTOCIN, which provoke contractions of the uterine muscle, by an intravenous drip. Labours which progress slowly or not at all may be due to abnormal positioning of the fetus or too large a fetus, when prostaglandin or oxytocin is used much more cautiously.

The second stage of labour is from full cervical dilation to the delivery of the baby. At this stage the mother often experiences an irresistible urge to push the baby out, and a combination of strong coordinated uterine contractions and maternal e?ort gradually moves the baby down the birth canal. This stage usually lasts under an hour but can take longer. Delay, exhaustion of the mother or distress of the fetus may necessitate intervention by the midwife or doctor. This may mean enlarging the vaginal opening with an EPISIOTOMY (cutting of the perineal outlet – see below) or assisting the delivery with specially designed obstetric forceps or a vacuum extractor (ventouse). If the cervix is not completely dilated or open and the head not descended, then an emergency caesarean section may need to be done to deliver the baby. This procedure involves delivering the baby and placenta through an incision in the mother’s abdomen. It is sometimes necessary to deliver by planned or elective caesarean section: for example, if the placenta is low in the uterus – called placenta praevia – making a vaginal delivery dangerous.

The third stage occurs when the placenta (or afterbirth) is delivered, which is usually about 10–20 minutes after the baby. An injection of ergometrine and oxytocin is often given to women to prevent bleeding.

Pain relief in labour varies according to the mother’s needs. For uncomplicated labours, massage, reassurance by a birth attendant, and a warm bath and mobilisation may be enough for some women. However, some labours are painful, particularly if the woman is tired or anxious or is having her ?rst baby. In these cases other forms of analgesia are available, ranging from inhalation of NITROUS OXIDE GAS, injection of PETHIDINE HYDROCHLORIDE or similar narcotic, and regional local anaesthetic (see ANAESTHESIA).

Once a woman has delivered, care continues to ensure her and the baby’s safety. The midwives are involved in checking that the uterus returns to its normal size and that there is no infection or heavy bleeding, as well as caring for stitches if needed. The normal blood loss after birth is called lochia and generally is light, lasting up to six weeks. Midwives o?er support with breast feeding and care of the infant and will visit the parents at home routinely for up to two weeks.

Some complications of labour All operative deliveries in the UK are now done in hospitals, and are performed if a spontaneous birth is expected to pose a bigger risk to the mother or her child than a specialist-assisted one. Operative deliveries include caesarean section, forceps-assisted deliveries and those in which vacuum extraction (ventouse) is used. CAESAREAN SECTION Absolute indications for this procedure, which is used to deliver over 15 per cent of babies in Britain, are cephalopelvic disproportion and extensive placenta praevia, both discussed above. Otherwise the decision to undertake caesarean section depends on the clinical judgement of the specialist and the views of the mother. The rise in the proportion of this type of intervention (from 5 per cent in the 1930s to its present level of over 23 per cent

P

of the 600,000 or so annual deliveries in England) has been put down to defensive medicine

– namely, the doctor’s fear of litigation (initiated often because the parents believe that the baby’s health has suffered because the mother had an avoidably di?cult ‘natural’ labour). In Britain, over 60 per cent of women who have had a caesarean section try a vaginal delivery in a succeeding pregnancy, with about two-thirds of these being successful. Indications for the operation include:

absolute and relative cephalopelvic disproportion.

placenta previa.

fetal distress.

prolapsed umbilical cord – this endangers the viability of the fetus because the vital supply of oxygen and nutrients is interrupted.

malpresentation of the fetus such as breech or transverse lie in the womb.

unsatisfactory previous pregnancies or deliveries.

a request from the mother.

Caesarean sections are usually performed using regional block anaesthesia induced by a spinal or epidural injection. This results in loss of feeling in the lower part of the body; the mother is conscious and the baby not exposed to potential risks from volatile anaesthetic gases inhaled by the mother during general anaesthesia. Post-operative complications are higher with general anaesthesia, but maternal anxiety and the likelihood that the operation might be complicated and di?cult are indications for using it. A general anaesthetic may also be required for an acute obstetric emergency. At operation the mother’s lower abdomen is opened and then her uterus opened slowly with a transverse incision and the baby carefully extracted. A transverse incision is used in preference to the traditional vertical one as it enables the woman to have a vaginal delivery in any future pregnancy with a much smaller risk of uterine rupture. Women are usually allowed to get up within 24 hours and are discharged after four or ?ve days. FORCEPS AND VENTOUSE DELIVERIES Obstetric forceps are made in several forms, but all are basically a pair of curved blades shaped so that they can obtain a purchase on the baby’s head, thus enabling the operator to apply traction and (usually) speed up delivery. (Sometimes they are used to slow down progress of the head.) A ventouse or vacuum extractor comprises an egg-cup-shaped metal or plastic head, ranging from 40 to 60 mm in diameter with a hollow tube attached through which air is extracted by a foot-operated vacuum pump. The instrument is placed on the descending head, creating a negative pressure on the skin of the scalp and enabling the operator to pull the head down. In mainland Europe, vacuum extraction is generally preferred to forceps for assisting natural deliveries, being used in around 5 per cent of all deliveries. Forceps have a greater risk of causing damage to the baby’s scalp and brain than vacuum extraction, although properly used, both types should not cause any serious damage to the baby.

Episiotomy Normal and assisted deliveries put the tissues of the genital tract under strain. The PERINEUM is less elastic than the vagina and, if it seems to be splitting as the baby’s head

moves down the birth canal, it may be necessary to cut the perineal tissue – a procedure called an episiotomy – to limit damage. This is a simple operation done under local anaesthetic. It should be done only if there is a speci?c indication; these include:

to hasten the second stage of labour if the fetus is distressed.

to facilitate the use of forceps or vacuum extractor.

to enlarge a perineum that is restricted because of unyielding tissue, perhaps because of a scar from a previous labour. Midwives as well as obstetricians are trained

to undertake and repair (with sutures) episiotomies.

(For organisations which o?er advice and information on various aspects of childbirth, including eclampsia, breast feeding and multiple births, see APPENDIX 2: ADDRESSES: SOURCES OF INFORMATION, ADVICE, SUPPORT AND SELF-HELP.)... pregnancy and labour

Target Cell

Abnormal ERYTHROCYTES which are large and ‘?oppy’ and have a ringed appearance, similar to that of a target, when stained and viewed under the microscope. This change from normal may occur with iron-de?ciency ANAEMIA, liver disease, a small SPLEEN, haemoglobinopathies (disorders of HAEMOGLOBIN), and THALASSAEMIA.

A target cell is also a cell that is the focus of attack by macrophages (killer cells – see MACROPHAGE) or ANTIBODIES; it may also be the site of action of a speci?c hormone (see HORMONES).... target cell

Haemoglobinopathies

Abnormal HAEMOGLOBIN formation occurs in the haemoglobinopathies, which are hereditary haemolytic anaemias, genetically determined and related to race. The haemoglobin may be abnormal because: (1) there is a defect in the synthesis of normal adult haemoglobin as in THALASSAEMIA, when there may be an absence of one or both of the polypeptide chains characteristic of normal adult haemoglobin; or (2) there is an abnormal form of haemoglobin such as haemoglobin S which results in sickle-cell disease (see ANAEMIA). This abnormality may involve as little as one amino acid of the 300 in the haemoglobin molecule. In sickle-cell haemoglobin, one single amino-acid molecule – that of glutamic acid – is replaced by another – that of valine; this results in such a de?cient end product that the ensuing disease is frequently severe.... haemoglobinopathies

Anaemia: Sickle Cell

A form of anaemia growing into an acute social problem, affecting people of African, Asian, and Mediterranean origin. Thalassaemias are caused by defects of a gene that produces the globin part of haemoglobin. Such defects in the DNA can now be detected in the womb before birth. The name derives from sickle-shaped cells instead of circular red blood cells. Few sufferers survive beyond their 40th year.

Symptoms. Unhealthy pallor, listlessness, sore tongue, dizziness, vague aches and pains, rapid pulse and breathing, tinnitus, palpitation. The skull may be disproportionately large, resistance to infection feeble, chances of survival poor. This form of anaemia is linked with defective colour vision. Impaired liver function. Stunted growth, great pain. Sufferers have a higher risk of infection.

Malaria. Sufferers are less likely to die of malaria because their red cells do not support the growth of malaria parasites very well.

Carriers: Carriers of the sickle-cell gene can now be identified by a simple blood test.

Treatment. No specifics exist but supportive herbal treatment has been known to increase output of red cells and raise haemoglobin levels:– Red Clover flowers, Yellow Dock, Echinacea, Burdock, Wild Indigo, Gentian, Nettles, Birch leaves, Sage, Walnut leaves, Centaury, Gota Kola (Indian Pennywort). Alternatives:– Tea. Mix equal parts: Iceland Moss, Nettles, Red Clover flowers. 2 teaspoons to each cup boiling water; infuse 15 minutes; 1 cup morning and evening.

Decoction. Mix equal parts; Echinacea, Walnut leaves, Balm of Gilead buds; 1 teaspoon to each cup water gently simmered for 20 minutes. Half-1 cup, cold, 3 times daily, before meals.

Tablets/capsules. Sarsaparilla. Ginseng. Iceland Moss. Red Clover. Echinacea. Gentian.

Powders. Formula: Echinacea 1; Fringe Tree half; Ginseng half; White Poplar bark 1. Dose: 500mg (two 00 capsules or one-third teaspoon) thrice daily before meals.

Liquid extracts. Formula. Echinacea 2; Dandelion 1; Oat Husk (avena sativa) 1. Mix. Dose, 1-2 teaspoons before meals, in water or one of the above teas or decoctions.

Tinctures. Same combination. Dose: 2-3 teaspoons.

Dong quai. See entry.

Pollen. Claimed to be of value.

Diet. Dandelion coffee. Molasses. Desiccated liver. Calf liver, fresh. Green leafy vegetables contain chlorophyll, iron and folic acid. Cider vinegar. Dried beans, apricots and shellfish. Dandelion leaves in salads. Milk, eggs, meats, Soya. Carrot juice to increase red cells.

Supplements. Daily. Vitamin B12. Vitamin C, 1g; Folic acid 400mcg, Floradix. Of particular value: Vitamin E 400iu. Zinc.

Note: Those at risk should submit themselves for screening. The disease cannot be cured but can be controlled largely by orthodox measures and sometimes by natural medicine. ... anaemia: sickle cell

Blood, Disorders Of

Disorders resulting from abnormalities in any of the components of blood or from infection. Disorders include types of anaemia, polycythaemia, bleeding disorders, and unwanted clot formation (thrombosis), hypoalbuminaemia (albumin deficiency) and agammaglobulinaemia (deficiency of gamma-globulin). Blood disorders such as sickle cell anaemia, thalassaemia, and haemophilia are inherited. Bone marrow cancers that affect production of blood components include leukaemia, polycythaemia vera, and multiple myeloma. Blood poisoning is usually due to septicaemia or a toxin such as carbon monoxide. Some drugs can cause blood abnormalities as a side effect. (See also anaemia, haemolytic; anaemia, iron-deficiency; anaemia, megaloblastic; malaria; hyperbilirubinaemia.)... blood, disorders of

Chorionic Villus Sampling

A method of diagnosing genetic abnormalities in a fetus using a small sample of tissue taken from the chorionic villi at edge of the placenta. Because the cells have the same chromosome makeup as those in the fetus, they can be used to detect genetic abnormalities. Chorionic villus sampling (CVS) is usually performed in the first 3 months of pregnancy in women who are at a higher-than-normal risk of having a child with a chromosomal disorder, such as Down’s syndrome, or a genetic disease, such as thalassaemia. Chromosome analysis of the villi cells takes place in the laboratory. CVS slightly increases the risk of miscarriage. choroid A layer of tissue at the back of the eye, behind the retina. The choroid contains many blood vessels that supply nutrients and oxygen to the retinal cells and to surrounding tissues in the eye. choroiditis Inflammation of the choroid. It is often caused by infections such as toxocariasis or toxoplasmosis, more rarely by sarcoidosis, syphilis, and histoplasmosis. It sometimes has no obvious cause. Treatment includes corticosteroid drugs for the inflammation, and antibiotic drugs for any causative infection.... chorionic villus sampling

Spleen

An organ that removes worn-out and defective red blood cells from the circulation and helps to fight infection by producing some of the antibodies, lymphocytes, and phagocytes that destroy invading microorganisms. The spleen is a fist-sized, spongy organ in the upper left abdomen behind the lower ribs.

The spleen enlarges in many diseases.

These include infections such as malaria and infectious mononucleosis; blood disorders such as leukaemia, thalassaemia, and sickle cell anaemia; and tumours such as lymphomas.

Enlargement of the spleen may be accompanied by hypersplenism.

The spleen may be ruptured by a severe blow to the abdomen.

This can cause potentially fatal haemorrhage, and an emergency splenectomy is needed.... spleen

Gene Therapy

treatment directed to curing genetic disease by introducing normal genes into patients to overcome the effects of defective genes, using techniques of *genetic engineering. The most radical approach would be to do this at a very early stage in the embryo, so that the new gene would be incorporated into the germ cells (ova and sperm) and would therefore be inheritable. However, this approach is not considered to be either safe or ethical, because the consequences would affect all descendants of the patient, and it is not being pursued. In somatic cell gene therapy the healthy gene is inserted into *somatic cells (such as the *haemopoietic stem cells of the bone marrow) that give rise to other cells. All the surviving descendants of these modified cells will then be normal and, if present in sufficient numbers, the condition will be cured (the defective gene will, however, still be present in the germ cells).

At present, gene therapy is most feasible for treating disorders caused by a defect in a single recessive gene, so that the deficiency can be overcome by the introduction of a normal allele (therapy for disorders caused by dominant genes (e.g. Huntington’s disease) would require the modification or replacement of the defective allele as its effect is expressed in the presence of a normal allele). Examples of such recessive disorders include *adenosine deaminase (ADA) deficiency and *cystic fibrosis. Gene therapy trials for the former condition have already begun: lymphocyte stem cells are isolated from the patient, using *monoclonal antibodies, and incubated with *retroviruses that have been genetically engineered to contain the normal ADA gene (see vector). This gene thus becomes integrated into the stem cells, which – when returned to the patient’s bone marrow – can then produce normal lymphocytes. A similar technique has been used in treating patients with *severe combined immune deficiency and is feasible for other blood disorders, such as sickle-cell anaemia and thalassaemia.

Clinical trials for the gene therapy of cystic fibrosis involve using *liposomes to introduce the normal gene into the lungs of sufferers via an inhaler.

Gene therapy for certain types of cancer is also undergoing clinical trials. Here the approach is aimed at introducing into the cancer cells tumour-suppressing genes, such as *p53 (which prevents uncontrolled cell division), or genes that direct the production of substances (such as *interleukin 2) that stimulate the immune system to destroy the tumour cells.... gene therapy




Recent Searches