– Hypothyroidism).
Function The chief function of the thyroid gland is to produce a hormone (see HORMONES) rich in iodine – THYROXINE, which controls the rate of body METABOLISM. Thus, if it is de?cient in infants they fail to grow and suffer LEARNING DISABILITY, a condition formerly known as CRETINISM. If the de?ciency develops in adult life, the individual becomes obese, lethargic, and develops a coarse skin, a condition known as hypothyroidism (see under THYROID GLAND, DISEASES OF). Overactivity of the thyroid, or hyperthyroidism, results in loss of weight, rapid heart action, anxiety, overactivity and increased appetite. (See THYROID GLAND, DISEASES OF – Thyrotoxicosis.)
The production of the thyroid hormone is controlled by a hormone of the PITUITARY GLAND – the thyrotrophic hormone.... thyroid gland
Symptoms include tiredness and lethargy. There may also be muscle weakness, cramps, a slow heart-rate, dry skin, hair loss, a deep and husky voice, and weight gain. A syndrome called myxoedema, in which the skin and other tissues thicken, may develop. Enlargement of the thyroid gland may also occur (see goitre). If the condition occurs in childhood, it may retard growth and normal development.
The disorder is diagnosed by measuring the level of thyroid hormones in the blood.
Treatment consists of replacement therapy with the thyroid hormone thyroxine; usually for life.... hypothyroidism
•genetic: familial; abnormalities of chromosomes, for example, TURNER’S SYNDROME; abnormal skeletal development; and failure of primary growth.
intrauterine growth retardation: maternal disorders; placental abnormalities; multiple fetuses.
constitutional delay in normal growth.
systemic conditions: nutritional de?ciencies; gastrointestinal absorption disorders; certain chronic diseases; psychosocial deprivation; endocrine malfunctions, including HYPOTHYROIDISM, CUSHING’S SYNDROME, RICKETS, dysfunction of the PITUITARY GLAND which produces growth hormone, the endocrine growth controller. Treatment of short stature is, where possible,
to remedy the cause: for example, children with hypothyroidism can be given THYROXINE. Children who are not growing properly should be referred for expert advice to determine the diagnosis and obtain appropriate curative or supportive treatments.... dwarfism
Adrenal glands These two glands, also known as suprarenal glands, lie immediately above the kidneys. The central or medullary portion of the glands forms the secretions known as ADRENALINE (or epinephrine) and NORADRENALINE. Adrenaline acts upon structures innervated by sympathetic nerves. Brie?y, the blood vessels of the skin and of the abdominal viscera (except the intestines) are constricted, and at the same time the arteries of the muscles and the coronary arteries are dilated; systolic blood pressure rises; blood sugar increases; the metabolic rate rises; muscle fatigue is diminished. The super?cial or cortical part of the glands produces steroid-based substances such as aldosterone, cortisone, hydrocortisone, and deoxycortone acetate, for the maintenance of life. It is the absence of these substances, due to atrophy or destruction of the suprarenal cortex, that is responsible for the condition known as ADDISON’S DISEASE. (See CORTICOSTEROIDS.)
Ovaries and testicles The ovary (see OVARIES) secretes at least two hormones – known, respectively, as oestradiol (follicular hormone) and progesterone (corpus luteum hormone). Oestradiol develops (under the stimulus of the anterior pituitary lobe – see PITUITARY GLAND below, and under separate entry) each time an ovum in the ovary becomes mature, and causes extensive proliferation of the ENDOMETRIUM lining the UTERUS, a stage ending with shedding of the ovum about 14 days before the onset of MENSTRUATION. The corpus luteum, which then forms, secretes both progesterone and oestradiol. Progesterone brings about great activity of the glands in the endometrium. The uterus is now ready to receive the ovum if it is fertilised. If fertilisation does not occur, the corpus luteum degenerates, the hormones cease acting, and menstruation takes place.
The hormone secreted by the testicles (see TESTICLE) is known as TESTOSTERONE. It is responsible for the growth of the male secondary sex characteristics.
Pancreas This gland is situated in the upper part of the abdomen and, in addition to the digestive enzymes, it produces INSULIN within specialised cells (islets of Langerhans). This controls carbohydrate metabolism; faulty or absent insulin production causes DIABETES MELLITUS.
Parathyroid glands These are four minute glands lying at the side of, or behind, the thyroid (see below). They have a certain e?ect in controlling the absorption of calcium salts by the bones and other tissues. When their secretion is defective, TETANY occurs.
Pituitary gland This gland is attached to the base of the brain and rests in a hollow on the base of the skull. It is the most important of all endocrine glands and consists of two embryologically and functionally distinct lobes.
The function of the anterior lobe depends on the secretion by the HYPOTHALAMUS of certain ‘neuro-hormones’ which control the secretion of the pituitary trophic hormones. The hypothalamic centres involved in the control of speci?c pituitary hormones appear to be anatomically separate. Through the pituitary trophic hormones the activity of the thyroid, adrenal cortex and the sex glands is controlled. The anterior pituitary and the target glands are linked through a feedback control cycle. The liberation of trophic hormones is inhibited by a rising concentration of the circulating hormone of the target gland, and stimulated by a fall in its concentration. Six trophic (polypeptide) hormones are formed by the anterior pituitary. Growth hormone (GH) and prolactin are simple proteins formed in the acidophil cells. Follicle-stimulating hormone (FSH), luteinising hormone (LH) and thyroid-stimulating hormone (TSH) are glycoproteins formed in the basophil cells. Adrenocorticotrophic hormone (ACTH), although a polypeptide, is derived from basophil cells.
The posterior pituitary lobe, or neurohypophysis, is closely connected with the hypothalamus by the hypothalamic-hypophyseal tracts. It is concerned with the production or storage of OXYTOCIN and vasopressin (the antidiuretic hormone).
PITUITARY HORMONES Growth hormone, gonadotrophic hormone, adrenocorticotrophic hormone and thyrotrophic hormones can be assayed in blood or urine by radio-immunoassay techniques. Growth hormone extracted from human pituitary glands obtained at autopsy was available for clinical use until 1985, when it was withdrawn as it is believed to carry the virus responsible for CREUTZFELDT-JAKOB DISEASE (COD). However, growth hormone produced by DNA recombinant techniques is now available as somatropin. Synthetic growth hormone is used to treat de?ciency of the natural hormone in children and adults, TURNER’S SYNDROME and chronic renal insu?ciency in children.
Human pituitary gonadotrophins are readily obtained from post-menopausal urine. Commercial extracts from this source are available and are e?ective for treatment of infertility due to gonadotrophin insu?ciency.
The adrenocorticotrophic hormone is extracted from animal pituitary glands and has been available therapeutically for many years. It is used as a test of adrenal function, and, under certain circumstances, in conditions for which corticosteroid therapy is indicated (see CORTICOSTEROIDS). The pharmacologically active polypeptide of ACTH has been synthesised and is called tetracosactrin. Thyrotrophic hormone is also available but it has no therapeutic application.
HYPOTHALAMIC RELEASING HORMONES which affect the release of each of the six anterior pituitary hormones have been identi?ed. Their blood levels are only one-thousandth of those of the pituitary trophic hormones. The release of thyrotrophin, adrenocorticotrophin, growth hormone, follicle-stimulating hormone and luteinising hormone is stimulated, while release of prolactin is inhibited. The structure of the releasing hormones for TSH, FSH-LH, GH and, most recently, ACTH is known and they have all been synthesised. Thyrotrophin-releasing hormone (TRH) is used as a diagnostic test of thyroid function but it has no therapeutic application. FSH-LH-releasing hormone provides a useful diagnostic test of gonadotrophin reserve in patients with pituitary disease, and is now used in the treatment of infertility and AMENORRHOEA in patients with functional hypothalamic disturbance. As this is the most common variety of secondary amenorrhoea, the potential use is great. Most cases of congenital de?ciency of GH, FSH, LH and ACTH are due to defects in the hypothalamic production of releasing hormone and are not a primary pituitary defect, so that the therapeutic implication of this synthesised group of releasing hormones is considerable.
GALACTORRHOEA is frequently due to a microadenoma (see ADENOMA) of the pituitary. DOPAMINE is the prolactin-release inhibiting hormone. Its duration of action is short so its therapeutic value is limited. However, BROMOCRIPTINE is a dopamine agonist with a more prolonged action and is e?ective treatment for galactorrhoea.
Thyroid gland The functions of the thyroid gland are controlled by the pituitary gland (see above) and the hypothalamus, situated in the brain. The thyroid, situated in the front of the neck below the LARYNX, helps to regulate the body’s METABOLISM. It comprises two lobes each side of the TRACHEA joined by an isthmus. Two types of secretory cells in the gland – follicular cells (the majority) and parafollicular cells – secrete, respectively, the iodine-containing hormones THYROXINE (T4) and TRI-IODOTHYRONINE (T3), and the hormone CALCITONIN. T3 and T4 help control metabolism and calcitonin, in conjunction with parathyroid hormone (see above), regulates the body’s calcium balance. De?ciencies in thyroid function produce HYPOTHYROIDISM and, in children, retarded development. Excess thyroid activity causes thyrotoxicosis. (See THYROID GLAND, DISEASES OF.)... endocrine glands
Rarely, an enlarged gland may be the result of cancer in the thyroid.
Treatment A symptomless goitre may gradually disappear or be so small as not to merit treatment. If the goitre is large or is causing the patient di?culty in swallowing or breathing, it may need surgical removal by partial or total thyroidectomy. If the patient is de?cient in iodine, ?sh and iodised salt should be included in the diet.
Hyperthyroidism is a common disorder affecting 2–5 per cent of all females at some time in their lives. The most common cause – around 75 per cent of cases – is thyrotoxicosis (see below). An ADENOMA (or multiple adenomas) or nodules in the thyroid also cause hyperthyroidism. There are several other rare causes, including in?ammation caused by a virus, autoimune reactions and cancer. The symptoms of hyperthyroidism affect many of the body’s systems as a consequence of the much-increased metabolic rate.
Thyrotoxicosis is a syndrome consisting of di?use goitre (enlarged thyroid gland), over-activity of the gland and EXOPHTHALMOS (protruding eyes). Patients lose weight and develop an increased appetite, heat intolerance and sweating. They are anxious, irritable, hyperactive, suffer from TACHYCARDIA, breathlessness and muscle weakness and are sometimes depressed. The hyperthyroidism is due to the production of ANTIBODIES to the TSH receptor (see THYROTROPHIN-STIMULATING HORMONE (TSH)) which stimulate the receptor with resultant production of excess thyroid hormones. The goitre is due to antibodies that stimulate the growth of the thyroid gland. The exoph-
thalmos is due to another immunoglobulin called the ophthalmopathic immunoglobulin, which is an antibody to a retro-orbital antigen on the surface of the retro-orbital EYE muscles. This provokes in?ammation in the retro-orbital tissues which is associated with the accumulation of water and mucopolysaccharide which ?lls the orbit and causes the eye to protrude forwards.
Although thyrotoxicosis may affect any age-group, the peak incidence is in the third decade. Females are affected ten times as often as males; the prevalence in females is one in 500. As with many other autoimmune diseases, there is an increased prevalence of autoimmune thyroid disease in the relatives of patients with thyrotoxicosis. Some of these patients may have hypothyroidism (see below) and others, thyrotoxicosis. Patients with thyrotoxicosis may present with a goitre or with the eye signs or, most commonly, with the symptoms of excess thyroid hormone production. Thyroid hormone controls the metabolic rate of the body so that the symptoms of hyperthyroidism are those of excess metabolism.
The diagnosis of thyrotoxicosis is con?rmed by the measurement of the circulating levels of the two thyroid hormones, thyroxine and TRIIODOTHYRONINE.
Treatment There are several e?ective treatments for thyrotoxicosis. ANTITHYROID DRUGS These drugs inhibit the iodination of tyrosine and hence the formation of the thyroid hormones. The most commonly used drugs are carbimazole and propylthiouricil: these will control the excess production of thyroid hormones in virtually all cases. Once the patient’s thyroid is functioning normally, the dose can be reduced to a maintenance level and is usually continued for two years. The disadvantage of antithyroid drugs is that after two years’ treatment nearly half the patients will relapse and will then require more de?nitive therapy. PARTIAL THYROIDECTOMY Removal of three-quarters of the thyroid gland is e?ective treatment of thyrotoxicosis. It is the treatment of choice in those patients with large goitres. The patient must however be treated with medication so that they are euthyroid (have a normally functioning thyroid) before surgery is undertaken, or thyroid crisis and cardiac arrhythmias may complicate the operation. RADIOACTIVE IODINE THERAPY This has been in use for many years, and is an e?ective means of controlling hyperthyroidism. One of the disadvantages of radioactive iodine is that the incidence of hypothyroidism is much greater than with other forms of treatment. However, the management of hypothyroidism is simple and requires thyroxine tablets and regular monitoring for hypothyroidism. There is no evidence of any increased incidence of cancer of the thyroid or LEUKAEMIA following radio-iodine therapy. It has been the pattern in Britain to reserve radio-iodine treatment to those over the age of 35, or those whose prognosis is unlikely to be more than 30 years as a result of cardiac or respiratory disease. Radioactive iodine treatment should not be given to a seriously thyrotoxic patient. BETA-ADRENOCEPTOR-BLOCKING DRUGS Usually PROPRANOLOL HYDROCHLORIDE: useful for symptomatic treatment during the ?rst 4–8 weeks until the longer-term drugs have reduced thyroid activity.
Hypothyroidism A condition resulting from underactivity of the thyroid gland. One form, in which the skin and subcutaneous tissues thicken and result in a coarse appearance, is called myxoedema. The thyroid gland secretes two hormones – thyroxine and triiodothyronine – and these hormones are responsible for the metabolic activity of the body. Hypothyroidism may result from developmental abnormalities of the gland, or from a de?ciency of the enzymes necessary for the synthesis of the hormones. It may be a feature of endemic goitre and retarded development, but the most common cause of hypothyroidism is the autoimmune destruction of the thyroid known as chronic thyroiditis. It may also occur as a result of radio-iodine treatment of thyroid overactivity (see above) and is occasionally secondary to pituitary disease in which inadequate TSH production occurs. It is a common disorder, occurring in 14 per 1,000 females and one per 1,000 males. Most patients present between the age of 30 and 60 years.
Symptoms As thyroid hormones are responsible for the metabolic rate of the body, hypothyroidism usually presents with a general sluggishness: this affects both physical and mental activities. The intellectual functions become slow, the speech deliberate and the formation of ideas and the answers to questions take longer than in healthy people. Physical energy is reduced and patients frequently complain of lethargy and generalised muscle aches and pains. Patients become intolerant of the cold and the skin becomes dry and swollen. The LARYNX also becomes swollen and gives rise to a hoarseness of the voice. Most patients gain weight and develop constipation. The skin becomes dry and yellow due to the presence of increased carotene. Hair becomes thinned and brittle and even baldness may develop. Swelling of the soft tissues may give rise to a CARPAL TUNNEL SYNDROME and middle-ear deafness. The diagnosis is con?rmed by measuring the levels of thyroid hormones in the blood, which are low, and of the pituitary TSH which is raised in primary hypothyroidism.
Treatment consists of the administration of thyroxine. Although tri-iodothyronine is the metabolically active hormone, thyroxine is converted to tri-iodothyronine by the tissues of the body. Treatment should be started cautiously and slowly increased to 0·2 mg daily – the equivalent of the maximum output of the thyroid gland. If too large a dose is given initially, palpitations and tachycardia are likely to result; in the elderly, heart failure may be precipitated.
Congenital hypothyroidism Babies may be born hypothyroid as a result of having little or no functioning thyroid-gland tissue. In the developed world the condition is diagnosed by screening, all newborn babies having a blood test to analyse TSH levels. Those found positive have a repeat test and, if the diagnosis is con?rmed, start on thyroid replacement therapy within a few weeks of birth. As a result most of the ill-effects of cretinism can be avoided and the children lead normal lives.
Thyroiditis In?ammation of the thyroid gland. The acute form is usually caused by a bacterial infection elsewhere in the body: treatment with antibiotics is needed. Occasionally a virus may be the infectious agent. Hashimoto’s thyroiditis is an autoimmune disorder causing hypothyroidism (reduced activity of the gland). Subacute thyroiditis is in?ammation of unknown cause in which the gland becomes painful and the patient suffers fever, weight loss and malaise. It sometimes lasts for several months but is usually self-limiting.
Thyrotoxic adenoma A variety of thyrotoxicosis (see hyperthyroidism above) in which one of the nodules of a multinodular goitre becomes autonomous and secretes excess thyroid hormone. The symptoms that result are similar to those of thyrotoxicosis, but there are minor di?erences.
Treatment The ?rst line of treatment is to render the patient euthyroid by treatment with antithyroid drugs. Then the nodule should be removed surgically or destroyed using radioactive iodine.
Thyrotoxicosis A disorder of the thyroid gland in which excessive amounts of thyroid hormones are secreted into the bloodstream. Resultant symptoms are tachycardia, tremor, anxiety, sweating, increased appetite, weight loss and dislike of heat. (See hyperthyroidism above.)... goitre
The energy needed to keep the body functioning at rest is called the basal metabolic rate (BMR). It is measured in joules (or kilocalories) per square metre of body surface per hour. The BMR increases in response to factors such as stress, fear, exertion, and illness, and is controlled principally by various hormones, such as thyroxine, adrenaline (epinephrine), and insulin. (See also metabolism, inborn errors of; metabolic disorders.)... metabolism
t
T3 see triiodothyronine.
T4 see thyroxine.... systolic pressure
Affects women more than men by 10:1 especially after menopause, whether this is natural or due to destruction or removal of ovaries in early adult life.
By means of a calcium-rich diet after 35 years it is a preventable disease. Like so many degenerative diseases a common cause is widespread consumptions of refined, processed, chemicalised foods. It is possible that dental caries is in reality osteoporosis.
In men, alcohol is the chief cause. It wreaks its greatest havoc in women 10-15 years after the menopause. Increased calcium will not restore tissue already lost by wasting. Emphasis is therefore on prevention. It is estimated that a quarter of women over 50 in the West suffer bone loss after the menopause when reduced oestrogen speeds loss of calcium with possible bone damage to wrist, spine and especially hip. The chances of such fractures in women reaching seventy are one in two.
Vitamin D deficiency predisposes, as also does over-prescription of thyroxine for hypothyroid cases. Fat-free diets can break bones.
In menopausal women, increased bone loss is associated with disorders of the ovaries, which organs should receive treatment. Specially at risk are anorexic women with absence of periods. Secondary causes: hyperthyroidism, long-term use of steroids, liver disease, drugs (Tamoxifen, Antacids).
Common fractures are those of hips, spine and wrist. Wrist bone mineral content and grip strength are related. Squeezing a tennis ball hard three times each morning and evening reduces risk of fractures of the wrist.
Drinking of Lemon juice contributes to brittle bones. The habit of daily drinking of the juice causes enamel of teeth to crumble and the removal of calcium from the bones.
Cod Liver oil (chief of the iodised oils) reaches and nourishes cartilage, imparting increased elasticity which prevents degeneration.
Coffee. Two or more cups of coffee a day significantly reduces bone mineral density in women, but drinking milk each day can counter it.
Alternatives. Alfalfa, Black Cohosh, Chamomile, Clivers, Fennel, Dong quai, Fenugreek, Liquorice, Meadowsweet, Mullein, Pimpernel, Helonias, Plantain, Rest Harrow, Shepherd’s Purse, Silverweed, Toadflax, Unicorn root. Nettle tea.
Tea. Equal parts. Alfalfa, Comfrey leaves, Nettles. Mix. 2 teaspoons to each cup boiling water; infuse 5- 15 minutes; 1 cup thrice daily.
Decoction. Equal parts: Comfrey root, Irish Moss (for minerals), Horsetail. Mix. 3 heaped teaspoons to 1 pint (500ml) water gently simmered 20 minutes. Dose: 1 cup thrice daily.
Tablets/capsules. Bamboo gum, Helonias, Iceland Moss, Irish Moss for minerals, Kelp, Prickly Ash. Formula. Horsetail 2; Alfalfa 2; Helonias 1. Mix. Powders: 500mg (two 00 capsules or one-third teaspoon). Liquid extracts: 1 teaspoon. Tinctures: 2 teaspoons. Action is enhanced by taking in a cup of Fenugreek tea.
Comfrey decoction. 1 heaped teaspoon to cup water gently simmered 5 minutes. Strain when cold. Dose: 1 cup, to which is added 10 drops Tincture Helonias, morning and evening. Fenugreek seeds may be used as an alternative to Comfrey root. Comfrey and Fenugreek are osteo-protectives. For this condition the potential benefit of Comfrey outweighs possible risk.
Propolis. Regeneration of bone tissue.
Dr John Christopher. Mix powders: Horsetail 6, de-husked Oats 3; Comfrey root 4; Lobelia 4. Dose: quarter to half a teaspoon 2-3 times daily.
Diet. Fresh raw fruit and green vegetables. Consumption of raw bran (which contains calcium-binding phytic acid) and wholemeal bread should be suspended until recovery is advanced. Natural spring water. Fish and fish oils. Reject high salt intake which aggravates bone loss and places the skeleton at risk by creating increasing loss of calcium and phosphorus through the kidneys. Avoid soft drinks, alcohol. Heavy meat meals inhibit calcium metabolism. Incidence of the disease is lower in vegetarians. High protein. Supplements. Daily. Vitamin A, Vitamin B12 (50mcg); Vitamin C (500mg); Vitamin D, Vitamin E, Folic acid 200mcg; Vitamin B6 (50mg); Calcium citrate 1g; Magnesium citrate 500mg. Boron and Vitamin D. Zinc 15mg.
Calcium helps reduce risk of fracture particularly in menopausal women who may increase their daily intake to 800mg – Calcium citrate malate being more effective than the carbonate. Dried skimmed milk can supply up to 60 per cent of the recommended daily amount of Calcium.
Stop smoking.
Information. National Osteoporosis Society, PO Box 10, Radstock, Bath BA3 3YB, UK. Send SAE. ... osteoporosis
A genetic disorder may impair the thyroid’s ability to secrete hormones and goitre may result. Thyroid infection is uncommon and leads to thyroiditis. Viral infection can cause extreme pain and temporary hyperthyroidism. Hormonal changes during puberty or pregnancy may cause a degree of goitre temporarily. Hyperthyroidism due to excessive production of by the pituitary gland is rare but can occur as a result of a pituitary tumour.
Because iodine is necessary for the production of thyroid hormone, its deficiency may lead to goitre. Severe iodine deficiency in children may cause myxoedema. (See also thyroid cancer.)
thyroid hormones The 3 hormones produced by the thyroid gland are thyroxine (T4) and triiodothyronine (T3), which regulate metabolism, and calcitonin, which helps to regulate calcium levels in the body.... thyroid gland, disorders of