Tri-iodothyronine Health Dictionary

Tri-iodothyronine: From 1 Different Sources


(T3) The substance which exerts the physiological action of thyroid hormone (see THYROID GLAND). It is formed in the body cells by the de-iodination of THYROXINE (tetraiodothyronine) which is the active principle secreted by the thyroid gland. It has also been synthesised, and is now available for the treatment of hypothyroidism (see THYROID GLAND, DISEASES OF). It is three times as potent as thyroxine.
Health Source: Medical Dictionary
Author: Health Dictionary

Endocrine Glands

Organs whose function it is to secrete into the blood or lymph, substances known as HORMONES. These play an important part in general changes to or the activities of other organs at a distance. Various diseases arise as the result of defects or excess in the internal secretions of the di?erent glands. The chief endocrine glands are:

Adrenal glands These two glands, also known as suprarenal glands, lie immediately above the kidneys. The central or medullary portion of the glands forms the secretions known as ADRENALINE (or epinephrine) and NORADRENALINE. Adrenaline acts upon structures innervated by sympathetic nerves. Brie?y, the blood vessels of the skin and of the abdominal viscera (except the intestines) are constricted, and at the same time the arteries of the muscles and the coronary arteries are dilated; systolic blood pressure rises; blood sugar increases; the metabolic rate rises; muscle fatigue is diminished. The super?cial or cortical part of the glands produces steroid-based substances such as aldosterone, cortisone, hydrocortisone, and deoxycortone acetate, for the maintenance of life. It is the absence of these substances, due to atrophy or destruction of the suprarenal cortex, that is responsible for the condition known as ADDISON’S DISEASE. (See CORTICOSTEROIDS.)

Ovaries and testicles The ovary (see OVARIES) secretes at least two hormones – known, respectively, as oestradiol (follicular hormone) and progesterone (corpus luteum hormone). Oestradiol develops (under the stimulus of the anterior pituitary lobe – see PITUITARY GLAND below, and under separate entry) each time an ovum in the ovary becomes mature, and causes extensive proliferation of the ENDOMETRIUM lining the UTERUS, a stage ending with shedding of the ovum about 14 days before the onset of MENSTRUATION. The corpus luteum, which then forms, secretes both progesterone and oestradiol. Progesterone brings about great activity of the glands in the endometrium. The uterus is now ready to receive the ovum if it is fertilised. If fertilisation does not occur, the corpus luteum degenerates, the hormones cease acting, and menstruation takes place.

The hormone secreted by the testicles (see TESTICLE) is known as TESTOSTERONE. It is responsible for the growth of the male secondary sex characteristics.

Pancreas This gland is situated in the upper part of the abdomen and, in addition to the digestive enzymes, it produces INSULIN within specialised cells (islets of Langerhans). This controls carbohydrate metabolism; faulty or absent insulin production causes DIABETES MELLITUS.

Parathyroid glands These are four minute glands lying at the side of, or behind, the thyroid (see below). They have a certain e?ect in controlling the absorption of calcium salts by the bones and other tissues. When their secretion is defective, TETANY occurs.

Pituitary gland This gland is attached to the base of the brain and rests in a hollow on the base of the skull. It is the most important of all endocrine glands and consists of two embryologically and functionally distinct lobes.

The function of the anterior lobe depends on the secretion by the HYPOTHALAMUS of certain ‘neuro-hormones’ which control the secretion of the pituitary trophic hormones. The hypothalamic centres involved in the control of speci?c pituitary hormones appear to be anatomically separate. Through the pituitary trophic hormones the activity of the thyroid, adrenal cortex and the sex glands is controlled. The anterior pituitary and the target glands are linked through a feedback control cycle. The liberation of trophic hormones is inhibited by a rising concentration of the circulating hormone of the target gland, and stimulated by a fall in its concentration. Six trophic (polypeptide) hormones are formed by the anterior pituitary. Growth hormone (GH) and prolactin are simple proteins formed in the acidophil cells. Follicle-stimulating hormone (FSH), luteinising hormone (LH) and thyroid-stimulating hormone (TSH) are glycoproteins formed in the basophil cells. Adrenocorticotrophic hormone (ACTH), although a polypeptide, is derived from basophil cells.

The posterior pituitary lobe, or neurohypophysis, is closely connected with the hypothalamus by the hypothalamic-hypophyseal tracts. It is concerned with the production or storage of OXYTOCIN and vasopressin (the antidiuretic hormone).

PITUITARY HORMONES Growth hormone, gonadotrophic hormone, adrenocorticotrophic hormone and thyrotrophic hormones can be assayed in blood or urine by radio-immunoassay techniques. Growth hormone extracted from human pituitary glands obtained at autopsy was available for clinical use until 1985, when it was withdrawn as it is believed to carry the virus responsible for CREUTZFELDT-JAKOB DISEASE (COD). However, growth hormone produced by DNA recombinant techniques is now available as somatropin. Synthetic growth hormone is used to treat de?ciency of the natural hormone in children and adults, TURNER’S SYNDROME and chronic renal insu?ciency in children.

Human pituitary gonadotrophins are readily obtained from post-menopausal urine. Commercial extracts from this source are available and are e?ective for treatment of infertility due to gonadotrophin insu?ciency.

The adrenocorticotrophic hormone is extracted from animal pituitary glands and has been available therapeutically for many years. It is used as a test of adrenal function, and, under certain circumstances, in conditions for which corticosteroid therapy is indicated (see CORTICOSTEROIDS). The pharmacologically active polypeptide of ACTH has been synthesised and is called tetracosactrin. Thyrotrophic hormone is also available but it has no therapeutic application.

HYPOTHALAMIC RELEASING HORMONES which affect the release of each of the six anterior pituitary hormones have been identi?ed. Their blood levels are only one-thousandth of those of the pituitary trophic hormones. The release of thyrotrophin, adrenocorticotrophin, growth hormone, follicle-stimulating hormone and luteinising hormone is stimulated, while release of prolactin is inhibited. The structure of the releasing hormones for TSH, FSH-LH, GH and, most recently, ACTH is known and they have all been synthesised. Thyrotrophin-releasing hormone (TRH) is used as a diagnostic test of thyroid function but it has no therapeutic application. FSH-LH-releasing hormone provides a useful diagnostic test of gonadotrophin reserve in patients with pituitary disease, and is now used in the treatment of infertility and AMENORRHOEA in patients with functional hypothalamic disturbance. As this is the most common variety of secondary amenorrhoea, the potential use is great. Most cases of congenital de?ciency of GH, FSH, LH and ACTH are due to defects in the hypothalamic production of releasing hormone and are not a primary pituitary defect, so that the therapeutic implication of this synthesised group of releasing hormones is considerable.

GALACTORRHOEA is frequently due to a microadenoma (see ADENOMA) of the pituitary. DOPAMINE is the prolactin-release inhibiting hormone. Its duration of action is short so its therapeutic value is limited. However, BROMOCRIPTINE is a dopamine agonist with a more prolonged action and is e?ective treatment for galactorrhoea.

Thyroid gland The functions of the thyroid gland are controlled by the pituitary gland (see above) and the hypothalamus, situated in the brain. The thyroid, situated in the front of the neck below the LARYNX, helps to regulate the body’s METABOLISM. It comprises two lobes each side of the TRACHEA joined by an isthmus. Two types of secretory cells in the gland – follicular cells (the majority) and parafollicular cells – secrete, respectively, the iodine-containing hormones THYROXINE (T4) and TRI-IODOTHYRONINE (T3), and the hormone CALCITONIN. T3 and T4 help control metabolism and calcitonin, in conjunction with parathyroid hormone (see above), regulates the body’s calcium balance. De?ciencies in thyroid function produce HYPOTHYROIDISM and, in children, retarded development. Excess thyroid activity causes thyrotoxicosis. (See THYROID GLAND, DISEASES OF.)... endocrine glands

Goitre

SIMPLE GOITRE A benign enlargement of the THYROID GLAND with normal production of hormone. It is ENDEMIC in certain geographical areas where there is IODINE de?ciency. Thus, if iodine intake is de?cient, the production of thyroid hormone is threatened and the anterior PITUITARY GLAND secretes increased amounts of thyrotrophic hormone with consequent overgrowth of the thyroid gland. Simple goitres in non-endemic areas may occur at puberty, during pregnancy and at the menopause, which are times of increased demand for thyroid hormone. The only e?ective treament is thyroid replacement therapy to suppress the enhanced production of thyrotrophic hormone. The prevalence of endemic goitre can be, and has been, reduced by the iodinisation of domestic salt in many countries. NODULAR GOITRES do not respond as well as the di?use goitres to THYROXINE treatment. They are usually the result of alternating episodes of hyperplasia and involution which lead to permanent thyroid enlargement. The only e?ective way of curing a nodular goitre is to excise it, and THYROIDECTOMY should be recommended if the goitre is causing pressure symptoms or if there is a suspicion of malignancy. LYMPHADENOID GOITRES are due to the production of ANTIBODIES against antigens (see ANTIGEN) in the thyroid gland. They are an example of an autoimmune disease. They tend to occur in the third and fourth decade and the gland is much ?rmer than the softer gland of a simple goitre. Lymphadenoid goitres respond to treatment with thyroxine. TOXIC GOITRES may occur in thyrotoxicosis (see below), although much less frequently autonomous nodules of a nodular goitre may be responsible for the increased production of thyroxine and thus cause thyrotoxicosis. Thyrotoxicosis is also an autoimmune disease in which an antibody is produced that stimulates the thyroid to produce excessive amounts of hormone, making the patient thyrotoxic.

Rarely, an enlarged gland may be the result of cancer in the thyroid.

Treatment A symptomless goitre may gradually disappear or be so small as not to merit treatment. If the goitre is large or is causing the patient di?culty in swallowing or breathing, it may need surgical removal by partial or total thyroidectomy. If the patient is de?cient in iodine, ?sh and iodised salt should be included in the diet.

Hyperthyroidism is a common disorder affecting 2–5 per cent of all females at some time in their lives. The most common cause – around 75 per cent of cases – is thyrotoxicosis (see below). An ADENOMA (or multiple adenomas) or nodules in the thyroid also cause hyperthyroidism. There are several other rare causes, including in?ammation caused by a virus, autoimune reactions and cancer. The symptoms of hyperthyroidism affect many of the body’s systems as a consequence of the much-increased metabolic rate.

Thyrotoxicosis is a syndrome consisting of di?use goitre (enlarged thyroid gland), over-activity of the gland and EXOPHTHALMOS (protruding eyes). Patients lose weight and develop an increased appetite, heat intolerance and sweating. They are anxious, irritable, hyperactive, suffer from TACHYCARDIA, breathlessness and muscle weakness and are sometimes depressed. The hyperthyroidism is due to the production of ANTIBODIES to the TSH receptor (see THYROTROPHIN-STIMULATING HORMONE (TSH)) which stimulate the receptor with resultant production of excess thyroid hormones. The goitre is due to antibodies that stimulate the growth of the thyroid gland. The exoph-

thalmos is due to another immunoglobulin called the ophthalmopathic immunoglobulin, which is an antibody to a retro-orbital antigen on the surface of the retro-orbital EYE muscles. This provokes in?ammation in the retro-orbital tissues which is associated with the accumulation of water and mucopolysaccharide which ?lls the orbit and causes the eye to protrude forwards.

Although thyrotoxicosis may affect any age-group, the peak incidence is in the third decade. Females are affected ten times as often as males; the prevalence in females is one in 500. As with many other autoimmune diseases, there is an increased prevalence of autoimmune thyroid disease in the relatives of patients with thyrotoxicosis. Some of these patients may have hypothyroidism (see below) and others, thyrotoxicosis. Patients with thyrotoxicosis may present with a goitre or with the eye signs or, most commonly, with the symptoms of excess thyroid hormone production. Thyroid hormone controls the metabolic rate of the body so that the symptoms of hyperthyroidism are those of excess metabolism.

The diagnosis of thyrotoxicosis is con?rmed by the measurement of the circulating levels of the two thyroid hormones, thyroxine and TRIIODOTHYRONINE.

Treatment There are several e?ective treatments for thyrotoxicosis. ANTITHYROID DRUGS These drugs inhibit the iodination of tyrosine and hence the formation of the thyroid hormones. The most commonly used drugs are carbimazole and propylthiouricil: these will control the excess production of thyroid hormones in virtually all cases. Once the patient’s thyroid is functioning normally, the dose can be reduced to a maintenance level and is usually continued for two years. The disadvantage of antithyroid drugs is that after two years’ treatment nearly half the patients will relapse and will then require more de?nitive therapy. PARTIAL THYROIDECTOMY Removal of three-quarters of the thyroid gland is e?ective treatment of thyrotoxicosis. It is the treatment of choice in those patients with large goitres. The patient must however be treated with medication so that they are euthyroid (have a normally functioning thyroid) before surgery is undertaken, or thyroid crisis and cardiac arrhythmias may complicate the operation. RADIOACTIVE IODINE THERAPY This has been in use for many years, and is an e?ective means of controlling hyperthyroidism. One of the disadvantages of radioactive iodine is that the incidence of hypothyroidism is much greater than with other forms of treatment. However, the management of hypothyroidism is simple and requires thyroxine tablets and regular monitoring for hypothyroidism. There is no evidence of any increased incidence of cancer of the thyroid or LEUKAEMIA following radio-iodine therapy. It has been the pattern in Britain to reserve radio-iodine treatment to those over the age of 35, or those whose prognosis is unlikely to be more than 30 years as a result of cardiac or respiratory disease. Radioactive iodine treatment should not be given to a seriously thyrotoxic patient. BETA-ADRENOCEPTOR-BLOCKING DRUGS Usually PROPRANOLOL HYDROCHLORIDE: useful for symptomatic treatment during the ?rst 4–8 weeks until the longer-term drugs have reduced thyroid activity.

Hypothyroidism A condition resulting from underactivity of the thyroid gland. One form, in which the skin and subcutaneous tissues thicken and result in a coarse appearance, is called myxoedema. The thyroid gland secretes two hormones – thyroxine and triiodothyronine – and these hormones are responsible for the metabolic activity of the body. Hypothyroidism may result from developmental abnormalities of the gland, or from a de?ciency of the enzymes necessary for the synthesis of the hormones. It may be a feature of endemic goitre and retarded development, but the most common cause of hypothyroidism is the autoimmune destruction of the thyroid known as chronic thyroiditis. It may also occur as a result of radio-iodine treatment of thyroid overactivity (see above) and is occasionally secondary to pituitary disease in which inadequate TSH production occurs. It is a common disorder, occurring in 14 per 1,000 females and one per 1,000 males. Most patients present between the age of 30 and 60 years.

Symptoms As thyroid hormones are responsible for the metabolic rate of the body, hypothyroidism usually presents with a general sluggishness: this affects both physical and mental activities. The intellectual functions become slow, the speech deliberate and the formation of ideas and the answers to questions take longer than in healthy people. Physical energy is reduced and patients frequently complain of lethargy and generalised muscle aches and pains. Patients become intolerant of the cold and the skin becomes dry and swollen. The LARYNX also becomes swollen and gives rise to a hoarseness of the voice. Most patients gain weight and develop constipation. The skin becomes dry and yellow due to the presence of increased carotene. Hair becomes thinned and brittle and even baldness may develop. Swelling of the soft tissues may give rise to a CARPAL TUNNEL SYNDROME and middle-ear deafness. The diagnosis is con?rmed by measuring the levels of thyroid hormones in the blood, which are low, and of the pituitary TSH which is raised in primary hypothyroidism.

Treatment consists of the administration of thyroxine. Although tri-iodothyronine is the metabolically active hormone, thyroxine is converted to tri-iodothyronine by the tissues of the body. Treatment should be started cautiously and slowly increased to 0·2 mg daily – the equivalent of the maximum output of the thyroid gland. If too large a dose is given initially, palpitations and tachycardia are likely to result; in the elderly, heart failure may be precipitated.

Congenital hypothyroidism Babies may be born hypothyroid as a result of having little or no functioning thyroid-gland tissue. In the developed world the condition is diagnosed by screening, all newborn babies having a blood test to analyse TSH levels. Those found positive have a repeat test and, if the diagnosis is con?rmed, start on thyroid replacement therapy within a few weeks of birth. As a result most of the ill-effects of cretinism can be avoided and the children lead normal lives.

Thyroiditis In?ammation of the thyroid gland. The acute form is usually caused by a bacterial infection elsewhere in the body: treatment with antibiotics is needed. Occasionally a virus may be the infectious agent. Hashimoto’s thyroiditis is an autoimmune disorder causing hypothyroidism (reduced activity of the gland). Subacute thyroiditis is in?ammation of unknown cause in which the gland becomes painful and the patient suffers fever, weight loss and malaise. It sometimes lasts for several months but is usually self-limiting.

Thyrotoxic adenoma A variety of thyrotoxicosis (see hyperthyroidism above) in which one of the nodules of a multinodular goitre becomes autonomous and secretes excess thyroid hormone. The symptoms that result are similar to those of thyrotoxicosis, but there are minor di?erences.

Treatment The ?rst line of treatment is to render the patient euthyroid by treatment with antithyroid drugs. Then the nodule should be removed surgically or destroyed using radioactive iodine.

Thyrotoxicosis A disorder of the thyroid gland in which excessive amounts of thyroid hormones are secreted into the bloodstream. Resultant symptoms are tachycardia, tremor, anxiety, sweating, increased appetite, weight loss and dislike of heat. (See hyperthyroidism above.)... goitre

Melissa Axillaris

(Benth.) Bakh f.

Synonym: M. parviflora Benth.

Family: Lamiaceae.

Habitat: Temperate and alpine Himalaya, from Garhwal to Bhutan and in Darjeeling and Aka, Mishmi and Khasi hills at l,000-3,600 m.

Unani: Billilotan.

Action: Carminative, diaphoretic, febrifuge in cases of catarrh and 406 Melissa officinalis Linn. influenza. The fruit is considered a brain tonic and useful in hypochondriac conditions.

The aerial parts of the plant yield 2% essential oil which is a good source of monoterpenic alcohols and aldehydes. It contains d-camphene 2.5, dl-alpha- pinene 2.3, 1-beta-pinene 2.13, delta- carene 2.05, d-limonene 12.95, azulene 1.26, linalool 13.36,1,8-cineole 9.33, cit- ronellal 4.0, citronellol 8.2, citral 13.0, geraniol 21.01, neptalactone 1.91, thymol 4.0 and citronellic acid 2.0%.

The herb is used as a substitute for Melissa officinalis Linn.

MJ

Habitat: Indigenous to the east Mediterranean region; introduced in India.

English: Mountain Balm, Sweet or Lemon Balm.

Unani: Baadranjboyaa, Billilotan. (Nepeta cataria Linn. and Nepeta hindostana Haines are also known as Billilotan.)

Action: Antidepressant, antispasmodic, antihistaminic, antiviral. Used in anxiety neurosis and nervous excitability, palpitation and headache. Also in hyperthyroidism.

Key application: In nervous sleeping disorders and functional gastrointestinal complaints. (German Commission E, ESCOP.) Externally for Herpes labialis (cold sores). (ESCOP.) As sedative and topi- cal antiviral. (The British Herbal Pharmacopoeia.)

Only fresh (herb within 6 months after collection) is usable as a sedative, because of low volatile oil content and its high volatility.

The volatile oil of the herb (0.100.2%) consists mainly of geranial and neral, with caryophyllene oxide and smaller quantities of terpenes; glycosides of the alcoholic or phenolic components of the volatile oil (including eugenol glucoside); caf- feic acid derivatives (rosmaric acid); flavonoids (including cymaroside, cos- mosiin, rhamnocitrin, isoquercitrin); triterpene acids (including ursolic acid).

Hot water extracts exhibit antiviral properties, mainly due to rosmaric acid and other polyphenols. (A cream containing the extracts of Balm is used for the treatment of cutaneous lesions of Herpes simplex virus.) Aqueous extracts inhibit tumour cell dividing.

Freeze-dried aqueous extracts inhibit many of the effects of exogenous and endogenous thyroid stimulating hormones (TSH) on bovine thyroid gland by interfering with the binding of TSH to plasma membranes and by inhibiting the enzyme iodothyronine deiodinase in vitro.

The anti-hormonal, mainly anti- thyroid effects of Balm are well documented. (Potter's New Cyclopedia, Sharon.M. Herr.)

For mild to moderate Alzheimer disease, 60 drops per day of standardized Lemon Balm extract (1 : 11 45% alcohol) was prescribed daily. Results were encouraging. (J Neurol Neurosurg Memecylon edule Roxb. 407 Psychiatry, 74, 2003; Natural Medicines Comprehensive Database, 2007.) (For cholinergic activity, BMJ, 325, 2002, 1312-1233.)... melissa axillaris

Thyrotrophin-stimulating Hormone (tsh)

A hormone (see HORMONES) manufactured and released by the anterior part of the PITUITARY GLAND which stimulates the THYROID GLAND to manufacture and release thyroid hormones (THYROXINE and TRI-IODOTHYRONINE).... thyrotrophin-stimulating hormone (tsh)



Recent Searches